AD-A230 608

poginnt Dufes

{ Approvad tor pushe teisasol
Dumounch dnbmaed o

DISTRIRUTIGH STATIMENT A k
A

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

——

Wright-Patterson Air Force Base, Ohio

KON
L P

o

et
o

AFIT/GCS/ENG/90D-06

ACCESS AND OPERATOR METHODS FOR
THE TRITON NESTED RELATIONAL
DATABASE SYSTEM

THESIS ,
Tina Marie Harvey 2
Captain, USAT ,%
AFIT/GCS/ENG/90D-06

Approved for public release; distribution unlimited

AFIT/GCS/ENG/90D-06

ACCESS AND OPERATOR METHODS FOR THE
TRITON NESTED RELATIONAL DATABASE SYSTEM

THESIS

Presented to the Faculty of the School of Engineering
of the Air Forr~Tn “*itute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science (Computer Science)

Accesion For

NTIS CRA&I
DT Ta3
U« ou.ced
Jaddification

oomL

Tina Marie Harvey, B.S.
Captain, USAF By
Di.tib.tio |
Avaitabiiity Codles
M:mm Avaii a .d]or
December 13, 1990 bist | Sp.cial
LA 11
-’
AT\

Approved for public release; distribution unlimited-

Acknowledgments

Before I recognize the people who significantly contributed to this-research effort, I
must first give praise to God for His comforting love and righteousness. I would like to
thank my instructors at AFIT for providing me a solid background for this research. For
guiding and reviewing my work, I would like to acknowledge the members of my committee,
Captain Eric Hanson and Dr. Gary Lamont. I am especially indebted to my advisor, Major
Mark Roth, who encouraged me-and directed this research effort. His superb guidance and
invaluable knowledge in the realm of database research and nested relational theory played
a critical role in the success of this thesis J would like to thank Major Martin Stytz, my
reader, for never failing to help-and encourage 1. ;; his enthusiasm is only-equalled by his
love for red pens. For providing further informatiun and help, I would-like to recognize
Captain -Craig Schnepf, my partner on the 1Yriton project. I would also like to thank
my roommate, Captain Nagin Ahmed, for always being there for me-these last eighteen
months. Of-course, I cannot say thank you enough to my husband, Michael, whose love

and selflessness has taught me the greatest lesson-of all.

Tina Marie Harvey

ii

Table of Contents]
Page 1
Acknowledgments i e e e ii
Table of Contents e e e e e iii
List of Figures e e e e e e e e viii
Listof Tables . . . 0o v i v i ittt e i et e e e e X
N 317 Y 1 OO xi
I Introduction i it i i it e e e e e 1-1
11l Overview . .o v v i it ittt e i e e e 1-1
1.2 Background e e e - 1-2
1.2:1 Relational Database Model. 1-2
1222 The Nested Relational Model. e 1-2
1.3 Purposeof Thesis 0 0. 1-4 4
1.3:1 The Triton Nested Relational Database System Archi-
fecture.00 i e e e e e e s 1-5
1.3:2 Algebra Used in the Triton System. 1-6
1.4 Scope-of this Research/Objective 1-6
1.5 Methodology/Approach e e 1-8
1.6 Materials and Equipment, . 1-8 :
1.7 Outline of this Document 1-9
11, Overview of the Nested Relational Model and the EXODUS Extensible
Database System o v v v i e e e e e e e e e e e e e e 2-1
21 OVeIVIEW . . . i i i it e e e e e e e e e e 2-1
2.2 Impetus for the Development of the Nested Relational Model 2-1
il

rage

2.3 Historical Development of the Nested Relational Model . . . 2-2

2.3.1 The Relational Model. 2-2

2.3.2 Introduction of Set-Valued Attributes. 2-2

2.3.3 Introduction of Relation-Valued Attributes. 2-3

2.4 Notable Advances in Nested Relational Database Theory . . 2-6

2.4.1 The SQL/NF Query Language. 2-6

2.4.2 Colby Algebra and its Optimization. 2-7

2.4.3 Indexing Techniques and Access Methods, 2-7

25 Related Worko v i i it i e 2-9

2.5.1 | Advanced Information-Management Prototype . . . 2-9

2.5:2 \ Darmstadt Database System 2-9

253 [The Verso DBMS. « o e voenennnnn. 2-10

2.6 ’EXODU% Extensible Database:System 2-10-
2.6.1 iDXODUS'TooIs Used in the Production of the Triton

Nested Database System.o oo v v v v vn.. 2-11

2.7 SUMMATY « v v v v e e e e e e e e e e e 2-13

III. Design and Implementation v v v v v v 3-1

3.1 Overview . . . i v i it i e e e e e e e e e e 3-1

3.2 Representation-of Nested Relations in Triton. 3-2

3.2.1 E Representation of Non-Nested Relations. 3-2

3.2.2 E Representation of Nested Relationc. 3-2

3.3 Design and Function of Methods 3-5

3:3;1 The Filescan Method. 3-5

3.3.2 The Loops_Join Method. e e e e e e e 3-8

3.3.3 Store.VaJues_Method. 3-12

3.3.4 Modify Method. S e e e e e e 3-13

3:3.5 Delete Method. e e e e 3-15

iv

Page
34 Code Generator . v v v v v o v v v v v v e cee e e 3-16

3.4.1 Rationale Behind Design Decisions for the Code-Gen-

erator. e e e e 3-16

342 SystemCatalogs., 3-16:

3.4.3 Operation of the Code Generator. 3-17

3.5 Summary e e e e e e e e e 3-19

IV. Analysisand Evaluation v, 4-1
41 Overview v v v i vttt i i i e e 4-1

4.2 Comparison of the NRM and Relational Representations of the

IDEF, LanguageDatao s - 4-1
4.2.1 Schema Definitions. e e 4-1

4.2.2 -Queries Used in this Comparison.. 4-2

4.2.3- Method of Comparison. v ... 4-2

4.24 Comparison-of Code Generation Times. 4-3

4.2.5 —Comparis’on,of Query Execution Times. 4-5

4.2.6 Summary of Comparison. ; 7; 4-8

4:3 Evaluation of the EXODUS Toolkit in this Research Effort . 4-9-
431 Collections. . . .o v v v v v v vt 4-9

432 Classes. . v v v v v v it it e e e 4-10

4.3.3 Persistence. e e e e 4-10

4.3.4 Data Representation. ‘e 4-10

4.3.5 Optimizer Generator.o ev o s 4-10

4.3.6 StorageManager.. 4-11

4.3.7 Overall Evaluation of the EXODUS Toolkit.. 4-11

44 SUMMAIY & ¢ v v v v v o ot e o e st b e oo s oo o u e o 4-12

V. Conclusions and Recommendations

Appendix A

5.1
5.2
5.3
5.4

.

Al
A2
A3
A4
A5

Appendix B.

B.1
B.2
B.3
B4

Appendix C.

Appendix D.

Appendix E.

Appendix F.

Appendix G.

Appendix H.

Appendix L.

Overview . . . v v v v v v vt v v oo
Summary of Research
Conclusions . + v v v v v v v v v v v v v

Recommendations

Colby Relational Algebra
Select (6). . v v v v v
Project (). o v v v v v v v v
Join (M),
Nest (1), oo v v v v i i iiiii e
Unnest (). « v v v v v v v v vt

Definition of Data Structures
PlanNode.
PredNode
ListNode0000
AttrdescNode

Data for the Employees Relation

Data for the Products Relation

¥ilescan Method e e e

Loops.Join Method

Store_Values Method

Modify Method

Delete Method

vi

oooooooo

oooooooooooo

oooooooooooo

oooooooooooo

oooooooooooo

............

.............

oooooooooooo

oooooooooooo

oooooooooooo

oooooooooooo

oooooooooooo

ooooooooooooo

oooooooooooo

oooooooooooo

e 5 s 0 0 s s s s s e

oooooooooooo

s s o 6 o s s s s .

oooooooooooo

oooooooooooo

............

............

c-1

D-1

E-1

Page
Appendix J. SQL/NF Create ’!.‘able Definition for the Relational Version of
the IDEF, Language Data oo v i v i vt i it i i i J-1

Appendix K. SQL/NF Create Table Definition for the Nested Versic;n of the
IDEFo LanguageData v e e e K-1

vii

List of Figures

Figure Page
1.1. The Flat Employee Relation Without Children 1-3
1.2, The Children Relation v i v i it it vt e v 1-4
1.3. The Nested Employee Relation 1-4
1.4. The Triton Nested Database System Architecture 1-5
2.1. Representation of a Relational VHDL Database 2-3
2.2. Representation of a VHDL Database with Set-Valued Attributes 2-4
2.3. Representation of a VHDL Database with Relation-Valued Atiributes . 2-5

2.4. The Triton Nested Database System Architecture Using EXODUS . . . 2-12

3.1. Prototype Nested Database Backend.
3.2. The Children Relation « v v v v v vt v vt ittt vt v e
3.3. E Specification of the Chiidren Relation e
3.4. The Nested Employee Relation
3.5. E Specification of the Empléyee Relation
3.6. Example:Plan Tree for Filescan Query
3.7. Example Plan Tree for Loops.Join Query
3.8. Example Plan Tree For Store_.Values Query N
3.9. Example Plan Tree For Modify Query,
3.10. Example-Plan Tree For Delete Query e
3.11.Contents of Reltable

3.12.Contentsof Sym_table i,

A.l. Employees Over 35 With Male Children
A.2. Project-Out Employee and-Child.2n Names
A.3. The Student Relation oo

e 31
Co 3-3
Ce 33
Ce 34
C 3-4
Ce 3.7
R 51
R St
A S
R ST
A 51
R S T

Figure Page
A.4. The Employee Relation Joined (on Children) to the Stuacnt Relation . A-4

A.5. The Flat Employee Relationo A-4
A.6. The Nested Employee Relation - .. e e e e A-5
Ba. A Plan Node . . . o v v v i it et e e ettt e e e e B-2
B2. APredNodeo v v vt v i v v e e e e e e B-2
B3, APredicate Tree . . v v v v v v i v it e e e e e e e e e e B-4
Bd4. AListNode e e e e e e et e e B-4
B.5. An Attrdesec Node . . . o v v v v i i e e e e et e e e B-5
C.1. Schema for the Empleyees Nested Relation C-1
DaA. Schema for the Products Mested Relation nD-1

R N R ST

Tt 2 a e L

List of Tables
Table ~ Page]
4.1. Code Generation Times for Relational Drawing Data Query 4-3 ?
4.2, Code Generation Times for Relational :.ctivity Data Dictionary Query 4-3
4.3. Code Gencration Times for Relational Data Element Data Dictionary
Query oo v et et e e e e e 4-4
4.4. Code Generation Times for Nested Queries 4-4
4.5. Comparison of Code Generation Times 4-5
4.6. Execution Times for Relational Drawing Data Query 4-6)
4.7. Execution Times for Relational Activity Data Dictionary Query 4-6
4.8. Execution Times for Relational Data Element Data Dictionary Query . 4-7
4.9. Query Execution Times for Nested Queries 4-7 V
4.10. Comparison of Query Execution Times v v vv v e ... 4-8
i

AFIT/GCS/ENG/90D-06

Abstract

Unique database requirements in the realm of non-standard applications (such as
computer-aided: design (CAD), computer-aided software engineering (CASE), and office
information systems (OIS)) have driven the development of new data models and database
systems based-on these new models. In particular, the goal of these new database systems
is to exploit the advantages of complex data models that are more efficient (in terms of

time and space) than their relational counterparts.

This research effort describes the design and implementation of the Triton nested
relational database system, a.prototype system based on the nested relational data model.
Triton is intended to be used as the backed storage component for some non-stzndard
application. To quickly prototype the system, the EXODUS-extensible database system is

used in the development of Triton.

The research presented in this document focuses on- Triton’s operator and access
methods, and compares the performance of the nested relational model versus the relational
model using these methods. In addition, the effectiveness of the EXODUS extensible

database toolkit is evaluated.

ACCESS AND OFERATOR METHODS FOR THE
TRITON NESTED RELATIONAL DATABASE SYSTEM

L. Introduction

1.1 Overview

Information storage and retrieval plays an increasingly important role in our lives.
Banking transactions, military command and-control, and hospital record keeping are but
a few examples of our dependence upon the prompt processing and efficient management

of large volumes of data.

Since the early 1960’s, computerized databases have-proven to be-an indispensible
way to-manage information (19). A database-management system (DBMS) consists of two
parts: a set of computer data and programs-that provide access to that data (18:1). A
DBMS:is different from a file system because in a file system only small portions-of-data
can be examined or updated at a time; file systems do not allow the efficient correlation

of data in separate files. DBMSs provide this-correlation in a fast and-easy fashion.

In recent years, database research has focused on the development of database
systems to support non-standard applications, such as computer-aided design (CAD),
computer-aided software engineering (CASE), and office information systems (OIS). Re-
quirements in these-new application areas have driven the development of new data-models
and database systems based on these new models to efficiently manage large volumes of

non-standard, or complex, data-(such as textural or pictoral information).

‘The Triton nestcd relational database system is a prototype system based on an
extension of the relational model (8), called the nested relational model-(32), which allows
a hierarchical representation of complex objects. The primary goal of this research-effort
is to-develop and implement operator and access methods for the Triton system- that
efficiently exploit this hierarchical representation of data. The intended use of the Triton

system is as the backend for applications which require database support not provided by

1-T

TR R L PO N T T e

current relational databases, such as CASE or CAD tools. Thus, queries to the system
will be-made via embedded calls within the application program, and, assuch, Triton will

be dealing with known queries as opposed to ad hoc queries.

The development of a DBMS is a mamoth- task in terms of time and the amount
of programming required. In order to quickly prototype the Triton system we utilized
EXODUS (7), an extensible database “toolkit” developed at the University of Wisconsin.
EXODUS provides several necessary facilities and tools that aid in the development of
Triton’s access methods, which include a storage manager and a persistent programming
language, called E. Not only does this research effort provide Triton the ability to process
queries of any-type (except for data restructuring queries), it also provides the means to
evaluate the advantages and disadvantages of using extensible systems such as EXODTUS
and a persistent programming language to build application-specific database management

systems.

The purpose of this chapter is to define the scope and purpose of this research-effort.
The relational:model is summarized, followed by an introduction of the nested relational
model. The Triton nested database system is then described, whicu leads-into the purpose

and scope of my research.

1.2 Background

1.2.1 Relational Database Model. In 1970, Codd proposed the formal relational
database model (8). In this model, information is stored in a tabular format called a
relation which is composed of attributes, or fields, and records, or tuples. A column in
a table represents an attribute and a row is a single record. As an example, Figure 1.1
shows a simple relation depicting information on employees of-a.company. In the relational
model, all attributes must be atomic, or undecomposable. In other words, an attribute
can only contain one integer, one real number, or a single character string. “A relation

which only has_atomic valued attributes is said to be in first normal forr: (INF).” (23:7)

1.2.2 The Nested Relational Model. The nested relational model (NKM) is an ex-

tension of the relational model that relaxes the 1INT restriction and allows-attributes of a

1-2

| dept | emp.name | emp.age| emp.ssn |
Marketing John Smith o7 237-46-3567
Research | Michael Taylor 31 395-73-8901
Advertising | Tina Therrien 43 555-12-3434
Personnel | Carla Dunlap 37 624-35-8152

Figure 1.1, The Flat Employee Relation Without Children

relation to be a set of values (20), or possibly, another relation (32). The NRM has two
advantages over the relational model for the storage of hierarchical data: decreased storage
requirement and increased processing speed. These advantages are best illustrated by an-

example. Assume we wish to store information on the employees of a company and their

children. If a relational database is-used to store this informauion, it requires-the relational

tables shown in Figures 1.1 and 1.2. Notice that the emp_ssn attribute is duplicated in

both tables so that the correspondence between employees and their children is not lost.

This attribute duplication clearly requires additional data storage. However, if a nested

relational database is used to store this information, only a single table is required as

depicted in Figure 1.3. Because children are nested directly under employees in the same

table, the emp_ssn field does not have to be duplicated to correlate employee data and-

children data. In addition, a query -on the relational database involving both employee
data and:children data would require the two tables to be joined, which takes time.! Since
all data-is kept in one table in the nested relational model, a costly join does not have
to take-place. An intangible advantage of the NRM over the-relational model is a more
intuitive-mapping of complex data; the relational:model splits the data into 1INF “chunks”,

while the NRM allows data to remain in hierarchical form within the database schema.

However, the nested relational model does have some disadvantages. The schema

of relations is more cqmi')lex due to relation-valued attributes. In addition, because data

is not normalized, updates to a nested relation may require the modification of several

tuples as-opposed to-the modification of one tuple in the relational version. Finally, the

nested relational model does not allow the sharing of relation=valued attributes between

1Such-a query might-be, “Vhat are the names of Michael Taylor’s children?”

1-3

o ¥ Lt

L L T A

[emp.ssn | child-name | child.age | sez |

237-46-3567 | Jeramie 8 M
' 237-46-3567 | Todd 4 M |
395-73-8901 Susan 3 F
555-12-3434 Laura 18 F
555-12-3434 John 13 M-
555-12-3434 | Matthew 11 M
624-35-8152 | George 5 M
624-35-8152 | Janis 3 F
Figure 1.2. The Children Relation
dept | emp_name | emp.age’| emp_ssn children
o o | child_-name | child.age | sex
Mktg | J. Smith 27 | 237-46-3567 | Jeramie | 8 M
) o ' | Todd 4 M
Rsrch | M. Taylor 31 1395-73-8901] Susan | 3 F
Adv | T. Therrien 43 | 555-12-3434 . Laura - 18 ¥
) " John | 13 M
Matthew 11 M
Pers | C. Dunlap 37 | 624-35-8152-| George | 5 M
1 Janis 3 F

Figure 1.3. The Nested Employee Relation

tuples of nested relations, However, for the Triton system, we feel the advantages of the
nested relational model outweigh its-disadvantages, particularly since the nested model
outperforms the relational model for complex data in terms of query execution time (as

shown in: Chapter 4).

1.8 Purpose of Thesis

The -goal of this research is to-provide Triton the ability to-process queries of any
type (except for data restructuring-queries) and to-Jay the foundation for future work in
this area. In particular, this research:centers on the design and implementation.of access
and operator methods that take advantage of the hierarchical nature of the nested data.

Because the EXODUS extensible database system is-used in the development of the Triton

1-4

QUERY RESPONSE

query plan B CODE query.e object /' GoMPILED
PARSER [™ e tree | GENERATOR E COMPILER QUERY

CATALOG STORAGE
MANAGER MANAGER]-

SCHEMA DATABASE

Figure 1.4. The Triton Nested Database System Architecture

system, the operator and access methods are developed within the constraints dictated
by EXODUS. The two areas where these constraints are felt most strongly are in the
representation of the-nested relational model using the persistent programming language
constructs of the E programming language provided by EXODUS (25), and access to these
persistent structures via the EXODUS storage-manager (5). These issues-are discussed-in

more detail in Chapter 4.

1.8.1 The Triton Nested Relational Database System Architecture. The scope -of
this research effort is best explained within the -context of the operation of the Triton

system. Query processing in this system, depicted in Figure 1.4, is explained below.

The user (or-application program) inputs-a query that.is written in-a speciul query
language for nested relations, called SQL/NF (26). By accessing the database schema
via the catalog manager, the parser translates the query into an unambiguous algebra for
computer manipulation. This algebraic representation is contained in a data structure
called a query tree, which consists of a series of nodes and pointers to other nodes. Each

query node contains a-relational algebra operator or an access method, the relation(s) the

method refers to, and any -oolean conditions-to apply.

The query tree is passed to the rule-based optimizer where it is changed to a plan tree.
In the optimizer, the sequence and contents of the nodes in the query tree are changed
into an optimized plan tree and relational operators are replaced with specific operator

methods.

The E code generator traverses the plan tree and generates the E code to effect the
operator and access methods to perform the query. The E compiler links the methods with
the E code that specifies the relation definitions. The resulting object code is executed to
manipulate the information in the database via the storage manager. The manipulated

data is returned to the user as the response to the query.

1.8.2 Algebra Used in the Triton System. The implementation of the operator and
access methods relies on a-structural representation of the nested relational algebra de-
veloped by Latha Colby (9). Colby defined a recursive-algebra for nested relations that
builds on the- traditional relational algebra operators. Her operators support the retrieval
of information from any level of nesting in a relation without first “flattening out” the

relation to-fit the relational model (9:276).

Colby’s algebra uses-an extensive group of set operators and redefines the select (o),
project (),-and join (M) operators of the relational model for use on nested objects. In
addition, she defined two new operators, nest (v) and unnest (u). The nest operator
restructures the database into a nested form, while the unnest operator-“flattens out” the
nested relation into a relational form. Appendix A gives a-brief éummary:of each of Colby’s

relational operators and- demonstrates their use on example nested relations.

1.4 Scope of this Research/Objective

The work accomplished in this research effort is summarized as follows:

1. Design and implementation of the operator methods of the Colby algebra to handle

multiple levels of nesting, including:

e The filescan method that implements a project and/or a select

¢ The loops_join-method that-implements a.join-as well as a project and/or select

1-6

2. Design and implementation of the access methods to modify data in the database,

including:
o The store_values method that adds data to a relation at any level or levels of
nesting

o The modify method that modifies data in a relation at any level or levels of

nesting

o The delete method that deletes data from a relation at any level or levels of

nesting
o The-create_rel method that adds a new relation to the database
o The drop_rel method that deletes a relation from the database
3. Design and implementation of the code generator, codegen, to implement the operator
and access methods
4. Testing of methods-and code generator
5. Comparison of the performance of the nested relational model versus its normalized

(1NF) version using-the operator methods-and code generator:

¢ Development of an E representation of a sampie set-of relational IDEF, language
data:(23)

Development of-an E representation of nested relational IDEF, language data (23)

Design of programs to load-data into both E representations

Creation of queries for both-representations to evaluate performance of the NRM

against the traditional relational model

o Comparison of the NRM against the relational model based on code generation

time and query execution time

6. Discussion of the advantages and disadvantages of using.the EXODUS toolkit in this

research effort

b vk Ut L L L ALY

FRYL T AT

1.5 Methodology/Approach

EXODUS provides several facilities and tools for the construction of application-
specific DBMSs. One such tool is the E programming language and its compiler (25, 24)
which is an extension of C++ (31) and builds on the object-oriented nature-of C++.
By exploiting the powerful object-oriented capabilities of the E and C++ programming
languages, the access and operator methods (which are described in detail in Chapter 3)
are implemented as iterator functions (25) using a recursive procedure; whenever a nested
attribute is encountered in the plan tree, the procedure is recursively called. The use of

recursion greatly simplifies the design-and permits any level of nesting in the query.

The E code generator implements the access and operator methods by setting up
an iterate loop that calls the operator methods. The operator and access methods are
tested using sample queries on various database schemas to ensure-the prototype database

performs correctly.

The Triton system is used to store data on Structured Analysis (SA) diagrams (22)
using the NRM representation as well as a relational representation of the same data. The
schemas used are based: on- the work-of Captain Gerald Morris (23). The performance of
the NRM representation i~ compared: to the relational representation; in particular, the
advantage of the NRM over the relational model is demonstrated with respect to code

generation time and-query execution-time.

All code produced in this research-effort is documented in accordance with Air Force

Institute of Technology-system development documentation guidelines and standards (15).

1.6 Materials and Equipment

This research effort-utilized the EXODUS facilities and tools on a Sun 3 workstation.
The developers of EXODUS at the University of Wisconsin released EXODUS software

modifications which were-implemented-at the Air Force Institute-of Technology:

1-8

a1 e s L] B Pt gt

Lt B, it ¥

1.7 -Outline of this Document

Chapter 2 describes the historical development of the NRM: and presents significant
work in NRM theory related to this research effort. This chapter alsopresents the EXODUS
extensible database system. Chapter 3 begins with a discussion of the E programming
language representation of nested relations. The chapter continues with a description of
Triton’s operator and access methods, including a presentation of the E code generator
that implements these methods. Chapter 4 evaluates the performance of the NRM versus
the relational model using the access and operator methods and discusses the advantages
and disadvantages of using the EXODUS toolkit in the development of the Triton system.

Chapter 5 provides a summary of this work and suggests areas for further research.

1-9

II. Overview of the Nested Relational Model and the EXODUS Extensible Database
System

2.1 Overview

This chapter provides an overview of key research in the area of nested relational
database systems as related to the developraent of the Triton nested relational database
system. In the sections that follow, the motivation for the development of the nested
relational model is discussed, followed by a brief summary -of its historical development.
Notable advances in nested.relational database theory are also presented, including a brief
survey of nested relational-database implementations. Finally, the chapter concludes with
a description of the EXODUS extensible database-system, and how EXODUS is used in
the-development-of Triton.

2.2- Impetus for the Development of the Nested Relational Model

The development of database management systems has:-been driven by the changing
needs of their users. The requirement for fast access to reliable data by multiple users
sparked the creation of database management systems in the 1960’s. For the next twenty
years, the hierarchical and-network models dominated the field of database design. In 1970, I

Codd (8) introduced a data model based on a tabular format, called the relational model.

However, widespread use-of the relational model-did not occur until the-late 1970’s-when J

straightforward query languages for the relational model were developed and prototype

" systems validated the model’s efficiency-(30:2).

Today, the major push in the realm of database research comes from a demand for
non-standard or non-business applications. These applications include-engineering design,
such as computer-aided design (CAD) and computer-aided software engineering (CASE), as
well as office automnation (33:2). These:new applications require more complex data models
to-efficiently map hierarchical data. “A database model should allow databases to be
viewed in a manner that is-based upon the meaning of data as seen by-its-users...” (4:xvii).
The nested relational model is an attempt to represent complex data within a relational

model framework.

In the nested relational model, as with the relational model, information is stored in
a tabular format. However, attributes in the relation do not have to be atomic, but can
have set-valued or relation-valued attributes. This allows information to be stored in the
database in a way that corresponds to the user’s interpretation of the data. Traditional
relational systems break complex data into several first normal form relations. Since non-
standard applicaticns involve queries that require access to many of these relations at once,
computationally expensive joins are needed to correlate all the necessary data. Nested
relations require fewer joins for complex data since the data is spread across fewer relations,

making the data model less confusing to users and database processing more efficient.

2.3 Historical Development of the Nested Relational Model

2.3.1 The Relational Model. The nested relational model is-the descendant-of the
relational model introduced by Codd (8). Codd’s seminal work represents data as-tables,
called relations. Data in the relations are accessed via a key that uniquely indentifies
each row, or tuple, of the relation. Figure 2.1 shows a simple relational database with
five relations-that hold information on VHSIC Hardware Description Language (VHDL)
designs (1).! In the relational model, all attributes of every relation must be atomic, or
non-decomposable. In other words, attributes may contain only one character string, one
integer, or one real number. When a relation conforms to this constraint, it is-in first

normal form (1NF).

2.8.2 Introduction of Set-Valued Attributes. Makinouchi (20)first suggested.remov-
ing the 1NF requirement, laying the groundwork for the nested relational model. A model
allowing attributes to have sets of values (called set-valued attributes) was introduced by
Jaeshke and Schek (17). Figure 2.2 shows the relational database for the VHDL example
used in Figure 2.1 where set-valued attributes are allowed. Notice'tha,t the only relation
affected by the change is-the SYS_.TO-COMP relation, where the value for the COMP#
attribute is a set of component numbers. Using set-valued attributes limits the size of the

database hecause SYS#-does not have-to be repeated for every occurance of COMP#.

1VHSIC stands for very kigh speed integrated-circuits.

2-2

SYSTEMS COMPONENTS SYS.TO.COMP
sYS# NAME coMP# | NAME SYS# COMP#
13191 COUNTER 15899 |-CLOCK.GEN 43191 15899
14701 FULL.ADD 30018 | ONTRL.CTR 12101 30018

41572 | MAJORITY 14701 41572
81909 | XOR.GATE 14701 81009
COMPONENT.PORTS
comp# | name |mop| Tvee |SEEN | SiE”
15899 RUN | in BIT 0 0
15899 cLx | out | BIT) 0
30018 otk | in | Bt | o 0 SYSTEM.PORTS
30018 STRB | in | BIT 0 0 | SYS# NAME o | rvee | SEEF | BIF
30018 coN | in |BITYV 0 1 || ase STRT in | BIT 0 0
30018 paTA | in lpirv | o 3 43191 STROB | in BIT 0 0
30018 cour | eut |BITV | o 3 || 4, con | in |miTYV 0 1
41572 A in | mir 0 o || 4191 | paras | in |mirv | o 3
41572 B in | srr | o 0 43191 CNT | out | Brrv o | s
41572 c in BIT i 0 0 14701 X in | sIT 0 0
72 MAJ | out | BiT 0 o | wm Y in | BT o | o
81909 a || mrd o o || wro CIN in | mir o | o
81959 B in BIT 0 0 14701 .2 out V'BIT] 0
81909- C :7 out BIT 0 0 : 14701‘ "~ cour out | BT o 0

Figure 2.1. Representation of-a Relational VHDL Database

2.3.3 Introduction of Relation-Valued Attributes. Thomas and: Fischer (32) went

another step further, suggesting that attributes of a relation be allowed to hold not only

sets_of values, but-complete relations. A database that allows relation-valued attributes is

called-a nested relational database. Figure 2.3 shows the nested relational database for the

VHDL example. This database is composed of two nested relations with one level of nesting

in each. The advantage of this-model comes:from the storage savings realized because the

SYS# and COMP#-attributes-are not each repeated three times in the database schema

(as they are in thetwo previous database schemas). In addition, only-one join is-required

to correlate all data in the nested database, as compared to-the four joins required in each

of the-two previous schemas.

2-3

g b

ol

I A e il L el 0 1 T

x

R

b B

P e

SYSTEMS COMPONENTS SYS.TO.COMF
" sys# NAME | COMP# NAME SYS# COMP#
43101 COUNTER 15899 | CLOCK:GEN 42101 {15899, 30016}
14701 FULL.ADD 30018 | CNTRL.CTR 1 um {41572, 81909}
41572 MAJORITY
81909 | XOR.GATE
COMPONENT_PORTS .
| compe | wame | Mon|Tvee | | Sn
15899 “RUN in | It 0 0
15899 CLK out | BIT 0 0 .
a0018 | oLK in { s | o | o SYSTBM.PORTS
| 0018 STRB in | BIT 0o 0 SYS# NAME | MOD| TYPE s*;li}'}‘T SB’g
* 30018 CON in | BITV | o 1 || ase1 | sTRT m Br| o 0
30018 DATA in |eirv| o 3 43191 | STROB | in Bir | o 0
| 30018 cour | out | Birv | o 3 43191 CON in jBI7.V | o 1
41872 A in BIT 0 o || 4m DATAB | in I'mrv| o | s
41572 B in | mir o 0 431903 CNT out |- BiTv | o 3
41572 c in | pr | o 0 14701 X in- | B | o 0
Casm2 “MAJ out)| BiT | o 0 14701 Y in Bir | o 0
81509 in | mir 0 0 14701 “GIN in | BT | o 0
$1900 B in | B | o o |} 14101 2 ot prr | o 0
1 s | ¢ out | BIT 0 0 14701 cour | ow | BT | o 0

Figure 2.2. Representation-of a VHDL Database with Set-Valued Attributes

i i 1 a |

a sl

fane

4
H
H
H
i

SYSTEMS

oy . PORTS
* AR COMTE I ame | Mop | tves | AR | SiF
STRT in BIT 0 0
15899 STROB in BIT 0 0
43191 COUNTER CON in BIT.V 0 1
30015 DATAB in | BIT.V 0 3
CNT out | BIT.V 0 3
X in BIT 0 0
41572 ¥ in BIT 0 0
14701 FULL.ADD CIN in BIT 0 0
81909 Z out | BIT 0 0
cour out BIT 0 0
COMPONENTS
coMP X PORTS
* NAME NAME |MOD |TYPE SE;‘}T SB'f'xl‘)
15899 CLOCK.GEN RN in BT 2 2
CLK out BIT 0 0
CLK in BIT 0 0
STRB in BIT 0 [
30018 CNTRL.CTR CON in BIT.V 0 1
DATA in BIT.V 0 3
cout out BIT.V 0 3
A in BIT] 0
41572 MAJORITY B = BT 2 2
c in BIT 0 0
! MAJ out BIT 0 0 !
A in BIT 0 0 :
81909 XOR.GATE B in BIT 0 0
c out | BIT 0 0

Figure 2.3. Representation of a VHDL Database with Relation-Valued Attributes

2.4 Notable Advances in Nested Relational Database Theory

Following the development of the nested rela.ional model (NRM), research in the
areas of query languages, nested relational algebra and its optimization, as well as special-
ized access methods have demonstrated the viabilty of the NRM. The next three sections
review the work in each of these three areas relevant to the development of the Triton

nested relational database system.

2.4.1 The SQL/NF Query Language. In 1987, Roth, Korth, and Batory (26) de-
veloped an extended version of the SQL query language for use on nested relations, called
SQL/NF. As with SQL, SQL/NF uses SELECT-FROM-WHERE (SFW) expressions to
pose queries involving any level of nesting in a nested relation. Unlike SQL, SQL/NF

allows nested SI'W expressions in both the SELECT and FROM clauses to manipulate

relation-valued attributes. Using the nested relational schema of Figure 2.3, an SQL/NF

query to retrieve the system name and port names for system 14701 is

SELECT name, (SELECT name
FROM ports)

;
;
:ﬁ
314
;
b
:

FROM systems
WHERE sys# = 14701 :

The outer SFW-expression retrieves the name of the system where the system number is

14701. The inner (nested) S'W-expression selects the name of each port of system 14701.

An SQL/NF query to retrieve the component names and component port names for

the components of system 14701 is

SELECT components.name, (SELECT name
FROM components.ports)
FROM systems nts

w11 SyStTems, Componen

WHERE systems.comp# = components.comp# AND sys# = 14701

The Cartesian product of the two relations, systems and components is formed, and the

only tuples selected are those where the comp# attribute of systems and components is the

2-6

same and sys# is 1470.1. Then the name attributes of components and ports is projected

out.

These simple examples do not completely demonstrate the full power of SQL/NF.
However, they do show how complex queries can be simply posed to a nested relational
database. Because of its simplicity and understandability, SQL/NI* was chosen as the

query language for the Triton system (28).

2.4.2 Colby Algebra and its Optimization. While query languages, such as SQL/NF,
are intended to provide an easy query capability for database users, rigid mathematical
algebras have been adopted for use on the relational and nested relational models to for-
malize the representation of queries. Natural language queries are usually translated into
the more rigorous algebra before being processed. The first algebras developed for the
NRM (32) required nested relations to be restructured to a relational format before infor-
mation could be extracted from the database. However, Colby (9) suggested a recursive
algebra that retrieves information from any level of nesting in a relation without first

restructuring the relation.

Colby redefined the select (o), project (w), and join (M) operators of the relational
model, and introduced two restructuring operators nest (v) and unnest (u). She also
decribed optimization techniques for her recursive algebra. Appendix A presents the op-
eration of the Colby algebra by some examples. Because of the ease with which SQL/NF
is mapped into the Colby algebra, the Colby algebra was selected for the Triton system.

2.4.8 Indexing Techniques and Access Methods. In databases, it is somatimes useful
to have an index on an attribute or several indices on a number of attributes to facilitate
quick access to a particular value. In the next two subsections, two papers are reviewed
that discuss indexing techniques and their use as access methods for nested relational
databases. In the first article, Bertino and Kim (3) present three indexing techniques
for use on nested relations. In the second article, the developers of the ANDA nested
database system (11) discuss a unique indexing structure and its use for efficient access

to information in their database. At the present time, no indexing techniques have been

e

Lot s sk

implemented for the Triton system. As such, these two articles are intended to serve as a

recommended approach for future developers of the Triton system.

2.4.3.1 Bertino and Kim’s Indexing Techniques. The first indexing technique
introduced by Bertino and Kim sets up a nested indez, that correlates the value of an
atomic attribute at some level of nesting with the indices of those tuples at the outermost
level of the relation that contain that value. The second index type, called the path index
corzelates the value of an atomic attribute at some level of nesting with a set of path indices
along every level of nesting correponding to those tuples with that value. The third and
final index type introduced by Bertino and Kim is the multiindex which, given a specific

path, creates a separate index for each subpath.

Following the presentation of the three indexing techniques, Bertino and Kim com-
pared them based on storage cost, retrieval cost, and update cost. They concluded that
the nested index has the lowest storage cost and the best retrieval performance, while the

multiindex is best with respect to update performance.

2.4.3.2 ANDA Nested Database System. Deshpande and Van Gucht (11) im-
plemented a nested relational database called ANDA. Of particlular interest to this re-
search are the access methods and mechanisms ANDA uses for the retrieval of data from
the database. ANDA makes a distinction between value-driven operations, such as select,

join, and nest, and structure-oriented operations, such as project and unnest.

Speed of retn :val of information is maximized for both types of operations by using
two different storage structures; VALTREE is the value-driven indexing structure, and

RECLIST is a special record-list structure used for structure-oriented operations. VAL-

TREE maps values to alist of tuple identifiers in all relations and relation- values attributes-

that contain that value. RECLIST maps these tuple identifiers to the actual physical ad-
dicoses where these tuples are stored. For increase efficiency, ANDA stores tuple identifiers
obtained from VALTREE in a special cache consisting of a set of stacks. Once these tu-
ple identifiers have been processed within the cache as specified by the query, RECLIST

retrieves the actual values or tuples in response to che query.

2-8

2.5 Related Work

This section is intended to provide a brief survey of nested relational database imple-
mentations. This section describes the Advanced Information Management Prototype, the
Darmstadt Database System, and the Verso DBMS, focusing on their storage management

techniques and access methods.

2.5.1 Advanced Information Management Prototype (AIM-P). The Advanced In-
formation Management Prototype (AIM-P) (10) was developed by IBM as a research ve-
hicle in the realm of non-standard applications. There are two similarities between AIM-P
and the Triton system: (1) both are intended to be the database implementation “back-
end” for design application tools, and (2) both use the nested relational data model to

represent the underlying structure of the database.

Because AIM-P was developed completely from scratch, the developers had the free-
dom to implement their design to take full advantage of the underlying data model (as
opposed to the Triton system, which was constrained by the specific capabilities of the
EXODUS storage manager).? Thus, AIM-P’s physical storage structure differs from Tri-
ton’s in that Triton maps relation definitions into a programming language, while AIM-P
uses a tree structure to hold the same information. The advantage of a tree structure
representation of data is that tuples can be added or deleted quickly at any level of nesting

by simply adding or deleting a data pointer to the appropriate internal node of the tree.

2.5.2 Darmstadt Database System (DASDBS). Developed at the Technical Uni-
versity of Darmstadt, the Darmstadt Database System (DASDBS) (16, 27) is “...a kernel
that integrates the common features of a rather low-level storage component, but allows

efficient and flexible front ends tailored to specific application classes...” (27:51).

The DASDBS kernel provides access (such as reading, insertion, and deletion) to sets
of complex objects as opposed to a one-record-at-a-time interface by fetching or storing lists
of pages via a variable size buffer. Thus, a single scan of a complex object retrieves all of

the values of its sub-objects, which limits the number of disk accesses. This is very similar

2This is explained in more detail in Chapter 4.

A fien g s

5
3
3
H
4
%
H

N § s R e

to the way the EXODUS storage manager works (5). The kernel provides operations to
read an object (similar to EXODUS’s scan), insert an object (similar to EXODUS’s in ...
new construct), and delete an object (similar to EXODUS’s delete). Like the EXODUS

storage manager, the DASDBS kernel proviacs concurrency control capabilities.

2.5.3 The Verso DBMS. The Verso DBMS (29) is a relational database system
that stores data in nested form (called V-relations) to increase query processing speed.

The Verso system consists of three layers:

1. The V-relation level, which is made up of V-relations and their schema

2. The file level, which is made up of the index and the physical representations of

V-relations

3. The lowest level, which is made up of blocks

This is similar to the Triton system, in that the V-relation levelcorresponds to Triton’s
system catalogs, the file level corresponds to the E language representation of relations,

and the lowest level corresponds to the EXODUS storage manager.

The Verso system utilizes a “filter” (mapper) for on-the-fly processing of tuples,
which can perform all algebraic operations except for restructuring actions. The filter is
implemented as a finite state automaton (FSA), which scans the V-relation one byte at a
time. The advantage of using such a filter is that query processing is much faster because it
is mapped to a very low-level representation of the problem space on a dedicated machine.
The disadvantage is that this low-level representation is complex and difficult to grasp,

making the filter hard to modify and maintain.

2.6 LEXODUS Estensible Database System

The creation of a new database system is not a trivial task. As with any major soft-
ware system, significant time is spent in the design, implementation, and testing phases.
Because of the need for the development of new database systems with novel capabilities,
extensible database systems have been designed to simplify the production of application-

specific DBMSs. Two such systems are the EXODUS extensible database system, devel-

2-10

e o

fo g

o g S b o L

2y Byt s

LU ¥ &,

oped at the University of Wisconsin (7), and the GENESIS system (2). The EXODUS
system is not a DBMS, but a toolkit that provides the necessary facilities and tools to aid
in the development of new DBMSs. The goal of the EXODUS system is the provision of

extensibility without sacrificing performance (7:475).

Because of its power, flexibility, and availability, EXODUS was selected to aid in
the development of the Triton system. EXODUS provides generic system components and
furnishes component generators to aid in the construction of DBMS-specific components.
When neither approach is possible, EXODUS provides tools to aid in the development of
the component. The EXODUS tools used in the development of Triton include:

o the storage manager (5, 6), which stores the physical data of the database and pro-

vides access to the data via procedural calls

e the E persistent programming language and its compiler (25, 24)

2.6.1 EXODUS Tools Used in the Production of the Triton Nested Database System.
The architecture of the Triton system is given in Figure 2.4. At the present time, Triton’s
parser (28) is able to parse all possible SQL/NT statements, but only builds query trees for
the statements that create and delete items in the system catalogs, as well as the statements
that directly translate into the appropriate algebraic operations of select, project, and

Cartesian product. Triton’s parser component was implemented using the UNIX tools of

YACC and LEX.

The query tree built by the parser is passed to the rule-based optimizer where it is
changed to a plan tree. In the optimizer, the sequence and contents of the nodes in the
query tree are changed into an optimized plan tree and relational operators are replaced
with specific operator methods. At the present time, Triton’s optimizer component has not
been developed. However, the intention is to use the EXODUS optimizer generator (13, 12)
to generate this component. The EXODUS optimizer generator takes as input (1) a set of
operators, (2) a set of methods that implement the operators, (3) transformation rules that
describe equivalence-preserving transformations of query trees, and (4) implementation
rules that describe how to replace an operator with a specific method. Using these rules,

a specific optimizer is generated for the particular application.

2-11

P O RS L o

2V B 2 B e

CES IR PRI TS PSP TN

QUERY RESPONSBE

query |F™7===""

i i > IrOPT 1 Plan_|i E CODE query.e
| PARSER {—= o, OPTIMIZER e . | GENERATOR ||B COMPILE

CATALOG STORAGE
MANAGER D fixed EXODUS component MANAGER
A d
R generated component
§ § desigued by Triton developers

Figure 2.4. The Triton Nested Database System Architecture Using EXODUS

We chose to use the EXODUS optimizer generator for Triton because the relational
algebra used by Triton lends itself to EXODUS’ rule-based method. This modular approach
to database development will reduce the amount of code required for implementation of
the Triton system. The only unique code Triton’s developers will need to write will be the
additional functions that are called by the optimizer when implementing a specific operator
or access method. With accurate cost functions, we aaticipate the generated optimizer will

work as well as a custom built one.

Using the programming constructs provided by the E programming language, the E
code generator is designed to traverse the plan tree and generate the E code to effect the
operator and access methods to perform the query. The EXODUS E compiler is used to

link the methods with the E code that specifies the relation definitions.

The storage manager is a fixed component provided by EXODUS. Conceptually, the
storage manager is the layer between the access and operator methods and the physical
data in the database. The storage manager is accessed via procedural calls in the compiled
query which allow the creation, destruction, and iteration through the contents of database

files. Objects can be inserted in and deleted from a file at any offset in the file, and explicit

T A S WA

At Lo Tl

TP AT L p bl o

FETTORRRC T

GuLl it J E L, A

Mt 4

RN i I 0 D S il

wb Bomdbea M A b S e S

ISk ek T ok a3,

e 7 B A &8 e B

Pt Tt A P18 2 A

[LPFIOWEN

clustering of objects on disk can be specified. The storage manager provides procedures

for transaction management as well as versioning of objects.

2.7 Summary

The goal of this chapter was to familiarize the reader with several key topics re-
lated to this research. This chapter introduced the nested relational model and described
its historical development. Notable advances in nested relational theory relevant to the
Triton system were described, including a brief survey of nested relational database imple-
mentations. Finally, the EXODUS extensible database system was described, focusing on
how the EXODUS toolkit was used to develop the Triton system. The following chapter
describes in more detail how EXODUS is used to develop the access and operator methods

for the Triton system.

2-13

III. Design and Implementation

8.1 OQverview

The goal of this research is to design and implement operator and access methods
for the Triton nested relational database system to efficiently process queries on nested
data. First, operator methods are developed to implement the project, select, and join
operators in the Colby relational algebra. Second, access methods are implemented to add
a relation, delete a relation, store tuples, delete tuples, and modify tuples. The methods
are implemented by the E code generator called codegen. Figure 3.1 shows how the E code

generator fits into the backend of the prototype database.

The optimizer produces a plan tree, which structurally represents the database user’s
query. The nodes of the plan tree contain specific operator and access methods. The
program codegen traverses the plan tree in postorder and, through the use of templates,
generates the code required to implement the query. This code is written to a file called
query.e, which, when executed, performs the query. A unique query.e file is dynamically
created for each user query. If a relation is added to or deleted from the database, codegen
does not create the file query.e, but directly performs the necessary actions to add or delete

the relation.

The remainder of this chapter is divided into three sections. The first section de-
scribes how nested relations are represented in Triton. The second section describes Tri-
ton’s operator and access methods. Finally, the third section discusses the design of the E

code generator that implements the methods.

. . lan ueryv.e result
optimizer P codegen quety E Compiler | C Compilerf|— of
tree query

3-1

2l I A P 0 L b E ot Mt ot b H MR st b e A0 AR Lt

3.2 Representation of Nested Relations in Triton

Because of its central importance to the Triton system, it is important to know how
nested relations are represented in E. A brief discussion of the declaration and representa-

tion of both non-nested and nested relations in the E programming language follows.

3.2.1 [E Representation of Non-Nested Relations. Figure 3.3 shows the relation
specification for the non-nested children relation of Figure 3.2. A tuple of the children
relation is of type child. The attributes are specified before the keyword public. Following
the keyword public are the constructor and member functions. The constructor function
takes as input three character pointers and an integer to initialize a tuple in the children
relation. The get_emp_ssn, get.child.name, get_child.age, and get_sez member functions
return the value of the corresponding attribute. The change.emp_ssn, change_child_name,
change.child.age, and change_child_sex member functions enable the values of the at-
tributes to be chax'xged. The print member function takes a pointer to a child tuple and
prints out the values of the attributes. The implementation of the member functions are

not given here. The line
dbclass child_relation: collection [child];
specifies that a child_relation type consists of a collection of tuples of type child. The line
persistent child_relation children;

declares a persistent relation called children, which is of type child_relation.

3.2.2 I Representation of Nested Relations. The E programming language sup-
ports the implementation of nested relations through the use of collections for relation-
valued attributes. TFigure 3.5 shows the E language relation specification for the em-
ployee relation of Figure 3.4. The emp type contains four atomic attributes called dept,
emp-name, emp.age, and emp._ssn as well as one relation-valued attribute called children,
which is a collection of tuples of type child. As a requirement, only atomic attributes are

specified in the constructor and member functions. The employee relation is a persistent

3-2

bt e s

Bergdm Tl

i
3
3
151‘
;

| emp_ssn | child_name | child_age | sez |

237-46-3567 | Jeramie 8 M
237-46-3567 Todd 4 M
395-73-8901 Susan 3 F
555-12-3434 Laura 18 F
555-12-3434 John 13 M
555-12-3434 | Matthew 11 M
624-35-8152 | George 5 M
624-35-§152 Janis 3 F

Figure 3.2. The Children Relation

object of type emp_relation made up of a collection of tuples of type emp. Any level of

nesting can be represented in the E programming language in a similar fashion.

dbstruct child {
dbchar emp.ssn12];
dbchar child_name[32];
dbint child_age;
dbchar sex[2];
public:
child (char *, char *, int, char #*);
char * get_emp_ssn();
void change_emp_ssn (char *);
char * get_child_name();
void change._child_name (char *);
int get_child_age();
void change.child_age (int);
char * get_sex();
void change_sex (char #);
void print (child *);
};

dbclass child_relation: collection [child];
persistent child_relation children;

Figure 3.3. E Specification of the Children Relation

CON TR IO

bl gt it

dept | emp.name | emp.age | emp.ssn children
child_name | child.age | sex
Mktg J. Smith 27 237-46-3567 | Jeramie 8 M 3
Todd 4 M]
Rsrch | M. Taylor 31 395-73-8901 Susan 3 F
Adv | T. Therrien 43 555-12-3434 Laura 18 F
John 13 M ;
Matthew 1. M 4
Pers | C. Dunlap 37 624-35-8152 | George 5 M 3
Janis 3 F 3
Figure 3.4. The Nested Employee Relation :
i
dbstruct child { .
dbchar child_name[32];
dbint child.age; :
dbchar sex[2]; 3

public:
child (char =, int, char *);
char * get_child_name();
void change_child_name (char *);
int get_child_age();
void change_child_age (int); 3
char * get_sex(); E
void change_sex (char #); i
void print (child *);
b

dbstruct emp {
dbchar dept[20); ;
dbchar emp_name[32];
dbint emp_age;
dbchar emp_ssal12];
dbclass childRVA: collection [child];
childRVA children;

public:
emp (char *, char *, int, char #*); E
char * get_dept();
void change.dept (char *);
char * get_emp_name(); E
void change_emp_name (char #);
int get_emp_age();
void change_emp_age (int);

char * get_emp_ssn(); e
void change_emp_ssn (char *); %
void print (emp *); .
¥

dbclass emp,.xelation: collection [empl;
persistent emp.relation employee;

Figure 3.5. E Specification of the Employee Relation

3.8 Design and Function of Methods

In this research effort, I designed and implemented two operator methods. The files-
can method can perform a select, a project, or both a select and project. The loops.join
method implements the join operator and can perform a select and/or project in conjunc-
tion with the join. In addition, five methods were implemented that (1) create a relation,
(2) delete a relation, (3) add tuples to a relation, (4) modify tuples in a relation, and
(5) delzte tuples from a relation. The methods that create and delete a relation are not
generated by codegen and written to the query.e file. Instead, codegen directly performs
the operations necessary to create or delete the relation. Because of this, the create re-
lation and delete relation methods are not described in this section, but are explained in

Section 3.4.

The design and implementation of my operator and access methods utilize several
data structures. Because these structures play a vital role in understanding the design of

Triton’s operator and access methods, Appendix B explait.s each one in detail.

8.3.1 The Filescan Method. The filescan method is implemented as an iterator
function (25) that yields tuples to the iterate statement with the schema defined by the
projection list. If a projection is taking place, the filescan method first defines a tempo-
rary nested relational schema to hold a tuple of the projected input relation. Once this
temporary relation template has been defined, filescan iterates through each tuple of the
input relation and determines if the tuple meets the selection condition, if such a condition
exists. If the tuple meets the selection condition, the appropriate attributes are copied
into the temporary relation template. A pointer to this temporary relation tuple is yielded

(returned) to the calling procedure.

3.8.1.1 Plan Tree Structural Represe lation of a Filescan. Using the nested
relational schema for the employees nested relation contained in Appendix C, the following
example illustrates how the filescan method works. Assume we have a requirement to do
a project and a select on the employees relation. The attributes to be projected out from

cmployees are name and age, and from the children relation-valued attribute of employees,

3-5

st sl b o Hd Bt S s N

o WY ol LTI et L L Y S8 bl ds e Bl

1 oAbl Lt

the name and age attributes must be projected. I'rom the toys relation-valued attribute
of children, the name attribute must be projected. The szlection condition extracts only

those tuples where the employees’ age is over 30 and the children’s age is less than 5.

The Colby algebra equivalent of this query is:
7 ((name, age, children (name, age, toys (name))) o (employeesggesso (childrengge<s)))

The plan tree representation of this query is shown in Figure 3.6. Notice that since
the predicate, age < 30, pertains to the atomic attributes at the highest level of the
employees relation, the predicate tree hangs off the pred portion of the plan node. Since
the second predicate, age < 5, pertains to the children relation-valued attribute, the
one node predicate tree hangs off the cond portion of the children list node. At first, 1
attempted {o make one predicate tree that specified all conditions for the query regardless
of what level of nesting they pertained to, but found this required many traversals of the
entire predicate tree to extract conditions (one traversal for each level of nesting). I found
it was more efficient (in terms of time) to separate the predicate into smaller predicate
trees, one for each level of nesting. This way, only the conditions relevant to that level are
present, and the predicate tree is not unnecessarily traversed if no conditions exist for that

level.

Fach projected attribute is represented by a list node. Relation-valued attributes
also appear as list nodes, but only list nodes representing relation-valued attributes can
have values for cond and sublist. The cond field of the list node for the relation-valued
attribute children points to the one node predicate tree representing the condition age < 5.
Since there are attributes being projected from the relation-valued attribute children, the
sublist field of the lis* node representing the children attribute points to another linked list
of list nodes representing those projected attributes of children. I thought of representing
the projected attributes at all levels of nesting as one linked list, rather than using sublists
for the projected attributes of relation-valued attributes. However, the use of sublists give
the representation of nested relations a recursive appearance, which lends itself well to

the use of recursion in the construction of the operator and access methods by the code

generator codegen.

name age children
CHAR INT PREV._DEF LES | TRUB
32 2 9 children | ><|
0 0 9 CHAR| _INT
FILESCAN child age | 3
employees employees employees employees
cmp 0 [[1)
Q

i i
> D= XN

name age toys
GRT] TRUB C;l;\R IN‘T mwvo_ou
employeesy < 5 2 5
CHAR| INT 0 o
age] 30 children children children
0 0 0
[! /

CHAR
32
(1]

toys
0

0

Figure 3.6. Example Plan Tree for Filescan Query

3.8.1.2 How the Filescan Method Works. The code that implements the files-
can for the tree discussed above is generated by codegen and contained in the file query.e.
The contents of query.e for this plan tree are given in Appendix E. The code between
the extern statement and the iterator statement is the temporary relation schema that
specifies the structure of a relation with the necessary attributes projected out from the
input relation. This specification also includes the code to implement the constructor and

member functions of the temporary relation.

The iterator actually performs the filescan. The filescan iterator is set up as a series

of steps for each level of nesting. These steps are:

scanning one tuple at a time

2. test the tuple to see if it meets the selection criterion, if one exists for that level of

nesting

e L s

T

fem

i

R P F ARt S)

e

ek

Sl

1] T

08 ot TP

1l e VRS F

3. project the necessary attributes from the input tuple (by using the get- member func-

tions) and record them in the temporary relation schema (by using the constructor

function)

4. set up necessary reference pointers to the input relation and to the temporary relation

if there is another level of nesting in the input relation

At the outermost level of nesting, after all other relation-valued attributes have been
processed, a pointer to the temporary tuple is returned by the filescan iterator. The main

program of query.e iterates through the filescan tuple-by-tuple and prints out the values

of the attributes.

3.8.1.8 Rationale Behind Design Decisions for the Filescan Method. 1 did
not initially implement the filescan method as an iterator function, but performed the
projection and selection in the main program along with the code that prints the result. I
decided to design the filescan as a separate function to make th. code in the query.e file
modular and less confusing, which is particularly useful when the query.e file implements
several filescans in one query (which occurs when filescans filter tuples to a join, as will be

discussed in Section 3.3.2).

After I decided to make the filescan a separate function, I designed it to return
the resultant relation as a whole after the processing was complete. However, it is much
faster to filter the relation a tuple at a time if further processing of the tuple is going
to take place (for example, if the filescan is filtering tuples to a join). This way, the
filescanned relation is only processed once. I chose to implement the filescan as an iterator
function, because iterator functions are controlled looping constructs that automatically
step through a sequence of items. Since each tuple of the filescanned relation needs to
be processed further (for a join) or printed (for a filescan alone), I felt that designing the

filescan method as an iterator function would elegantly serve my needs.

3.3.2 The Loops_Join Method. The loops.join method 1s implemented as an iterator
function that yields tuples with the schema defined by the join. The loops_join method

can implement a projection and/or a selection in ccajunction with the join. The loops_join

3-8

>y

PO LS U S 4 T A M Sy 2% e

method first defines a temporary nested relational schema to hold a tuple of the result of
the join, or a tuple of the projected result of the join (if a projection is also taking place).
The loops_join method iterates through each tuple of the left input, and for each tuple,
it iterates through all tuples of the right input. If the tuples meet the join criterion, the
appropriate attributes of each are copied into the temporary relation. If no join criterion
is specified, the loops_join method acts as a cross product. A pointer to the temporary

relation tuple is returned to the calling procedure.

3.3.2.1 Plan Tree Structural Representation of a Loops.Join. To illustrate
how the loops_join method works, the nested relation employees in Appendix C and the
nested relation products in Appendix D are used. The required operation is to join the
products relation with the toys relation-valued attribute of children, where children is a
relation-valued attribute of employees. The join criterion is that the name of the product
must be the same as the name of the toy. Tc make this example niore realistic, assume a
filescan is going to take place on employees that projects out the employee’s name as well
as the name of the toy. In addition, assume a filescan is going to take place on products
that projects out the product’s name and atl the information on the manufacturer of the

product.

The Colby algebra equivalent of this query is:

My (7 ((name, children (toys (name))) employees) (children (toys)), # ((name,

manufacturer) products))

where 6 is toys.name = products.name

The plan tree representation of this query is shown in Figure 3.7. The two inputs to
the loops_join node are filescan nodes that each have attribute lists for their projections.
The second attribute of the products filescan is a relation-valued attribute but does not
have a sublist, hence all attributes of manufacturers are to be projected out. The loops_join
node specifies the join criterion, which hangs off the pred field of the plan node. Notice
that the constant-on_right field of the pred node is false, meaning that both operands in

the predicate are attribute names (and not constants).

3-9

by B P

childrea
PREV.DEF
1]
[1]
LOOPS_JOIN child
employees
0 toys
EQI. FALSE 0 PREV.DEF
employees products 0
CHAR CHAR 0
name name toy
children
/ \ °
FILESCAN name manufacts
products CHAR PREV_DEF
product 32 | 0
(1 0 0
—
el manufact
products products
[+] [¢]
name children
CHAR PREV.DEF
32 0
0 0
= child
FILBSCAN employees employees
employees] o
c¢mp 0 toys
o f ﬁ PREV.DEF
0
— TR =2
toy
children
0 __name |
CHAR
32
4]
toys
0

Figure 3.7. Example Plan Tree for Loops-Join Query

3-10

byl e B s

3

VPP B EPE IR Y 0, W BNt Bt |

S oAzt

=4

On the loops_join node, the Colby join path is specified by the two list nodes, children
and toys. This means that the join is to occur between the toys relation-valued attribute
and the products relation. While the Colby algebra enables a join to occur within a nested
relation-valued attribute of the first relation, the join can only occur at the top level of the

second relation. Otherwise, the joined schema would not be constructable.

3.3.2.2 How the Loops.Jein Method Works. As with the filescan method,
the code that implements the loops._join method for the plan tree shown in Figure 3.7 is
generated by codegen and contained in the file query.e. Apperdix F shows the contents
of query.e for this plan tree. The group of code before the main program can be logically

separated into three sections:

1. the templates and filescan iterator function for the employees relation
2. the templates and filescan iterator function for the products relation

3. the templates and loops_join iterator function for the join of the products relation to

the employees relation

The first two sections (which implement the two filescans) operate as discussed in Sec-
tion 3.3.1. The third section of code (which implements the join) is similar to the two

filescan sections, but has some notable differences.

First, a temporary relation structure is defined that holds a tuple of the result of the
join. This is performed the same way as in the filescan method. The temp5 structure is the
level where the join is occuring. Notice that the name attribute of toys has been renamed
to toys.name and the name attribute of products has been renamed to products.name. The
reason for the renaming is that attribute names must be unique within a level of nesting.
Since the joining of the relations would put two occurances of name at one level of nesting,
these two attributes are given a unique name by codegen by combining the parent relation

name with the attribute name.

The loops._join iterator performs the join. For each tuple of the filescan on the left,

if the join level has not been reached, the join template is filled. This continues until the

join level is reached. Then for each tuple of the filescan on the right, if the join condition

is satisfied, the join template is filled with information from the two relations. If there are

any relation-valued attributes present in the join template at this level, reference pointers
are set up to descend a level of nesting. All relation-valued attributes that belong to the
left and right relations are filled. Finally, after a single tuple of the join template has been

filled, a pointer to this tuple is yielded (returned) by the loops_join iterator.

The main program of query.e uses the loops_join iterator to step through each tuple

of the joined relation and prints out the value of each attribute.

3.8.2.3 Rationale Behind Design Decisions for the Loops.Join Method. Be-

g B g B el LI F e N ey e DA g R T g u el bl L gk g o L

cause the loops_join method may feed a join above it, I also implemented this method as
an iterator function. The alternative is to return the joined relation after processing as a

whole; however, if further processing is taking place above the join, it is more efficient in

ik 8 0 01D e Pl st

terms of time to perform the join as a filter, passing tuples one at a time to the node above.
I designed the loops_join method to carry out a projection and selection in conjunction

with the join to avoid having to process all the tuples of the join a second time.

3.8.3 Store_Values Method. The store_values method can insert any number of tu-

ples into a nested relation at any level of nesting. Condition statements are used to locate

the correct tuple in the relation where the new values are to be stored. The code generator

creates the query.e file which contains the code to implement the store_values method.

As an example, assume the employees schema as defined in Appendix C is used.

Suppose we wish to add a new project to the employee David and two new toys to his

daughter, Flo. Tigure 3.8 gives the plan tree representation of this query. The leaves of the

tree are values that are to be inserted into the relation. At the leaf level, each attribute
of the relation or relation-valued attribute has, by definition, a corresponding list node
containing the value of the attribute for this new tuple. This value is contained in the
value field of the attrdesc node. If a relation-valued attribute is being into the relation, it

may have a sublist pointing to the values of its attributes. A null sublist indicates that

there are no tuples for this relation-valued attribute.

e |
4
E
3
b,
children rojects E
PREV_DEF EQL | TRUE PREV.DEF
[} children 0
] CHA CHAR 0]
child name | Flo project E
STORE_VAL cmployees employees 4
employees 0 0 E
emp 3
0 :
> .
toys name number F
EQL] TRUE PREV.DEF CHAR INT K
employees| “>< 0 32 2
CHAR] CHAR [1) AWANA 384 b
name | David toy E
children _projects projects #
0 Q
->"L¢IZDX] ngk L_&l T IRW
hame color name color :
GCHAR CHAR CHAR CHAR E
32 32 32 32 -
car black truck blue E
10y ‘ toys toys 10y E
0 0 [0 0 %
»ﬁmﬁima—»ﬁzm——ﬂfm |

Figure 3.8. Example Plan Tree For Store_Values Query

The contents of query.e for the plan tree of Figure 3.8 is given in Appendix G. The
method scans each tuple of employees until David is reached. Then David’s children are
scanned until Flo is reached, where two new toys are added. Finally, a new project is

added to David’s projects relation-valued attribute.

SAEI S et e D Rt e, 5 b, 4 2!

et

3.3.4 Modify Method. The modify method can modify values of the attributes for

a nested relation at any level of nesting. Condition statements are used to locate the tuple

i
i
J
3
H

in the relation where the values are to be changed. If no condition is specified, the atomic
values of all tuples in the relation or relation-valued attribute will be changed to the new
value. The code generator codegen creates the query.e file which contains the code to

implement the modify method.

To illustrate, using the employees schema as defined in Appendix C, suppose that the

employee David is working on a project named “BNAD” that must be renamed “TROY”.

3-13 5

children

I — _ - projects
PREV.DEF EQL | TRUE PREV.DEF EQL | TRUE
0 children_ [><| 0 rojects
0 CHAR| CHAR 0 CHARl CHAR
child name | Flo project name | BNAD
MODIFY employees employees
employees [1] 0
emp
[
—————
Eap—————
age toys name
INT PREV.DER CHAR
EQL | TRUE 2 0 32
[Employees L) 0 TROY
CHAR] GCHAR| toy
name ! David children children projects
[1] [0

color
CHAR

blue

toys
0

g

Figure 3.9. Example Plan Tree For Modify Query

Also assume we wish to change the age of his daughter, Flo, to four, and all her toys to blue.
Figure 3.9 gives the plan tree representation of this query. The leaves of the tree are new
values for attributes in the relation. The three attributes being changed (project name,
child age, and toy color) are represented by three leaf nodes. The conditions represented
by the predicate trees specify whether the change is occurring at selected tuples or to all

tuples of the relation or relation-valued attribute.

The contents of query.e for the plan tree depicted in Figure 3.9 is given in Ap-
pendix H. The method scans employees until David is reached. Then David’s children are
scanned until Flo is reached. At this point, Flo’s age is changed to four, and all her toys’
colors are changed to blue. If we wanted to change the color of only some of Flo’s toys, a
predicate tree would appear on the toys list node specifying the select condition. Finally,

David’s projects are scanned until “BNAD” is found, which is renamed to “TROY".

children projects
PREV.DEF EQL | TRUE PREV.DEF
0 children [T>< [}
0 CHAR| CHAR 0
child name { Flo project
DELETE employees employees
employees 0 [}]
emp
° R
B ——
toys
EQL| TRUE PREV.DEF
employees| >><| 0
CHAR| CHAR 0
name | Lavid toy
children
0

e

Figure 3.10. Example Plan Tree For Delete Query

3.83.5 Delete Method. The delete method can delete tuples from a nested relation
at any level of nesting. Condition statements are used to locate the level(s) where the
deletion is to occur. The code generator codegen creates the query.e file which contains

the code to implement the delete method.

To illustrate, using the employees relation schema as defined in Appendix C, suppose
all of David’s projects and all of his daughter Ilo’s toys are to be deleted. Figure 3.10 gives
the plan tree representation of this query. Only relation-valued attributes appear in the
attribute list. A list node with a condition and a sublist indicates that the deletion does not
occur at this level, but at some sub-level. If a list node has a condition but no sublist, only
those tuples that meet the selection condition are deleted. If the list node has no condition,
then all its tuples are deleted. When a tuple is deleted that has a relation-vaiued attribute

in its schema, all tuples in its relation-valued attribute must be deleted.

Appendix I gives the contents of query.e for the plan tree of Figure 3.10. The method
scans employees until David is reached. Then all of David’s children are scanned until Flo

is reached, and all her toys are deleted. David’s projects are then deleted.

3-15

S e N

TEK PRI AT WL AT P L IR

AN

SORPILL RNy e

o s S LLAC Sy

ot

H
:

3.4 Code Generator

The code generator codegen generates a unique query.e file for each query by walking
the plan tree.! The main program of codegen makes a function call to traverse_plan_tree
to walk the plan tree and generate the code. After thisis e, the main program calls

generate_main which generates the main program of query.e.

3.4.1 Rationalc Behind Design Decisions for the Code Generator. The end purpose
for the Triton system is to be the backend for non-standard application tools. Application
programs make calls to the database via embedded SQL/NT statements. When it came
time to design how the Triton system would perform queries, two approaches were possible.
The query implementor could either be (1) an interpreter that manipulates the database

directly, or (2) a code generator that generaies the code to implement the query.

There are advantages and disadvantages to both approaches. The interpreter ap-
proach would work well in an ad hoc query environment, since manipulation of the database
is performed directly by the interpreter. The code generator would require substantial time
to compile and run each generated query. The code generator approach works best when
specific queries are known ahead of time, so that the code for those queries is already
generated and compiled. The interpreter approach would take longer in this type of envi-
ronment, since the query must be analyzed and executed on the fly. Because the intended
environment for the Triton system does not require an ad hoc query capability, the code

generator approach was chosen.

8.4.2 System Catalogs. The code generator uses two system catalogs (which are
stored as relations) to record information about the relations in the database. These two
catalogs, developed by Mankus (21) are called Rel-table and Sym._table. Figure 3.11 gives
an example of the contents of Rel.table to hold the two relations, employees and products,
which were used in the description of the loops_join method in Section 3.3.2. Figure 3.12

shows the corresponding contents of Sym_table.

'However, codegen does not create a query.e file for the create relation and delete relation access methods.

3-16

| rellndez | relName l relType |

0. employees 10
1 - products | 20

Figure 3.11. Contents of Rel_table

Rel_table has three attributes, rellndez, relName, and relType. The name of the
relation is recorded in the relName attribute. The relIndez attribute serves as an index
for Rel.table, and the relType attribute records the relation’s schema and is a number

corresponding to the index of Sym_table where the schema is defined.

Sym_table has seven attributes called indez, name, level, attr, numb, parent, and
nest_table. The name attribute holds the name of the schema or attribute. Schema names
must be unique. The level attribute tells whether this entry is a schema or an attribute.
The attr attribute describes the type of the attribute. Relation-valued attributes have:the
value PREV_DEFINED for attr, while schemas have ON.THE_FLY. The numb attribute
records the number of characters if-the type is CHAR, the number of bytes if the type is INT
or FLOAT, or the-number of attributes if the type is PREV_DEFINED or ON.THE_FLY.

If the value for level is ATTRIBUTE, the parent attribute holds the:index number of-the-
parent schema. If the value for attr is PREV_DEFINED, the nest:table attribute holds-

the index number of its defining schema.

3.4.8 Operation of the Code Generator. All'the methods except for the loops_join
method is represented by a single node plan tree. However, the loops.join method is
represented by a-multi-node plan tree which is traversed by codegen in-postorder. Codegen
uses “statement templates” in the E programming language to create the query.e files
(described in the previous section) corresponding to the plan tree. Recursion is used

whenever a sublist is encountered in the plan tree, which greatly simplifies the actions-of

codegen and allows-any level of nesting in the plan tree. Since codegen-dirvectly performs-

the actions necessary to create and delete_ relations, these are described in more detail

below.

3-17

L kd

S AL

| indez | name { level | allr | numb | parent | nest_iable |
0 toy SCHEME ON.THE.FLY 2 -1 -2
1 color ATTRIBUTE CHAR 32 0 -2
2 name ATTRIBUTE CHAR 32 0 -2
3 child SCHEME ON.THE_FLY 3 -1 -2
4 name ATTRIBUTE CHAR 32 3 -2
5 age ATTRIBUTE INT 2 3 -2
6 toys ATTRIBUTE | PREV.DEFINED 2 3 0
7 project SCHEME ON.THE_FLY 2 -1 -2
8 name ATTRIBUTE CHAR 32 7 -2
9 number ATTRIBUTE INT 2 7 -2
10 emp SCHEME ON_THE_TFLY 5 -1 -2
11 name ATTRIBUTE CHAR 32 10 -2
12 age ATTRIBUTE INT 2 10 -2
13 dno ATTRIBUTE INT 2 10 -2
14 children ATTRIBUTE | PREV_.DEFINED 3 10 3
15 projects ATTRIBUTE | PREV_.DEFINED 2 10 7
16 manufacturer SCHEME ON.THE_FLY 3 -1 -2
17 location ATTRIBUTE CHAR 32 16 . -2
18 name ATTRIBUTE CHAR 32 16 -2
19 phone ATTRIBUTE INT 2 16 -2
20 product SCHEME ON_THE_FLY 3 -1 -2
21 name ATTRIBUTE CHAR 32 20 -2
22 price ATTRIBUTE FLOAT 4 20 -2
23 manufacturers | ATTRIBUTE | PREV.DEFINED 3 20 16

Figure 3.12. Contents of Sym._table

8.4.8.1 Operation of Code Generator for Create.Rel. When codegen encoun-
ters a plan node where the method is “CREATE_REL”, it creates the files describing the
relation definitions. As an example, Appendix C shows the files that describe the rela-
tion definitions for the employees relation. In addition, codegen creates a batch file called

compile_schemas which, when executed, will compile the relation definitions.

3.4.3.2 Operation of Code Generator for Drop.Rel. When codegen encounters
a plan node where the method is “DROP_REL”, it checks both Rel_table and Sym.table
to see if the relation scheme is a. defining scheme for another relation or if it is used within
another scheme definition. If it is not being used, codegen deletes the contents of the

relation, removes the corresponding scheme definition files, and deletes the scheme from

g e e

the symbol table. After all appropriate schemas have been deleted, codegen deletes the

relation from the relation table.

3.5 Summary

This chapter described how nested relations are represented in Triton using the con-
structs of the E programming language. Following this description, exch of the methods
implemented in this research effort were discussed. Finally, the chapter concluded with a
look at the operation of Triton’s code generator. Using the access and operator methods
presented in this chapter, the following chapter evaluates the performance of the nested re-
lational model versus the relational model and discusses the advantages and disadvantages

of using the EXODUS toolkit in the development of the Triton system.

3-19

o

ST}

)

ITRVE] PP

g

Catrd Kt At et

TP LTI

Tadliales,

FORETR L R

IV. Analysis and Evaluation

4.1 Overview

As stated in Chapter 1, the Triton system is intended to be the backend storage
component for non-standard database applications, such as CAD, CASE, or CIS tools.
The first application for the Triton system is the representation of a particular CASE
methodology, the USATF IDEF, Structured Analysis language (22). Morris (23) defined a
nested relational model and ¢ relational model representation for IDEFy. As a result of
his analysis, he speculated that the speed of query execution for the NRM representation
would be faster than that of the relational representation. The goal of this chapter is to
assess Morris’ speculation by implementing both NRM and relational representations in
the Triton system, and comparing query performance in terms of query generation and
execution times. We found that in both areas, the nested representation outperformed the
relational version in terms of speed, particularly in code generation time. Following this
comparison, we discuss the advantages and disadvantages of using the EXODUS toolkit

for the development of the Triton system.

4.2 Comparison of the NRM and Relational Representations of the IDEFy Language Data

4.2.1 Schema Definitions. Using SQL/NF CREATE TABLE commands, the schema
definitions for the relational and nested relational representations of the IDEF, Language
Data are given in Appendices J and K, respectively. At the outermost level, only one
SQL/NI REATE TABLE command is needed for the NRM representation since all
IDETFy language data is contained in one table. The data used to fill these tables is the
same data used by Morris (23).

Because the interface between the € yL/NF front end and the backend of the Triton
system is not yet developed, the SQL/Ni* CREATE TABLE commands were not used to
generate the E language structures (the .e and .h files) that describe the NRM and relational
representations of the IDEF, language data. Instead, the system catalogs were filled with
data describing the schema of the two representations, and the E language structures of

both representations were automatically generated using the create_rel method described

4-1

.

in Chapter 3. Even without the useof the SQL/NF front end, generation of the E language

structures was fairly straightforward.

4.2.2 Queries Used in this Comparison. Morris identified seven actions the CASE

application tool might request from the database. These are:

1. Create all database tables

2. Toad all database tables

3. Erase all database tables

4. Extract all data in database

5. Extract-all drawing data for-a particular sheet (diagram)
6.. Pxtract-data dictionary information for a-particular activity

7. Extract data dictionary information for a-particular data element

The last three activities (queries) in this list were selected-for the comparison presented in
this-chapter, since the majority of the-application program’s queries will probably be one

of these-three.

Morris-(23) presented the SQL/NF descriptions of each of these queries. Accord-
ing-to- his analysis, the relational representation requires eight subqueries to extract all
drawing-data for a particular sheet, whereas only one query is needed to extract the same
information from the NRM database. In the same fashion, six subqueries are required in
the-relational version as compared to one query in the nested version to extract activity
data dictionary-information. To extract data element data dictionary information, twelve
subqueries are required-in the relational version and one query is needed in the nested

version.

4 .2:’3'7 Method of Comparison. The tworepresentations were compared with respect
to-code generation time and query execution time. Each query was-generated and executed
twentytimes; and the minimum, maximum, variance, and average were calculated for each
of these twenty runs. All reported times are in seconds, and all runs were accomplished on

a-Sun 3 workstation at approximately the same level of workload.

Table 4.1. Code Generation Times for Relational Drawing Data Query
| Subquery # | Min Time | Max Time | Variance | Average Time |

1 3.06 3.22 0.002080 3.092
2 2.36 2.50 0.000779 2.390
3 3.00 3.18 0.002378 3.021
4 3.00 3.12 0.001873 3.021
5 3.00 3.14 0.000938 3.017
6 2.36 2.50 0.000825 2.384
7 3.00 3.16 0.001831 3.029
8 4.28 4.42 0.001401 4.307

Total 24.261

Table 4.2. Code Generation Times for Relational Activity Data Dictionary Query
| Subquery # | Min Time | Max Time | Variance | Average Time |

1 2.44 2.58 0.002521 2.465
2 2.34 248 0.000922 2.362
3 2.54 2.88 0.006496 2.573
4 3.02 3.16 0.002152 3.054
) 3.02 3.14 0.001301 3.038
6 3.78 3.94 0.002294 3.819

Total 17.311

4.2.4 Comparison of Code Generation Times. Table 4.1 gives the code generation
figures for the relational version of the drawing query. These are the figures obtained by
running codegen to generate the code to implement the drawing query. Note that eight
subqueries are needed, so the total gives the average total query generation time for the
entire query. In the same fashion, Tables 4.2 and 4.3 give the code generation figures for the
relational versions of the activity and data element data dictionary queries, respectively.
For the nested version, since no subqueries are needed to extract the drawing data, activity
data dictionary information and data element data dictionary information, each of these
three retrievals involve only one query. Table 4.4 gives the code generation figures for all
three queries. The low variance validates the fact that workload is about the same across

the board for all runs.

Table 4.5 compares the code generation times for the relational version against the

4-3

T T S T I T R T T T Y

Table 4.3. Code Generation Times for Relational Data Element Data Dictionary Query
| Subquery # | Min Time | Max Time | Variance | Average Time |

1 2.38 2.54 0.001906 2.413
2 2.32 2.54 0.004762 2.366
3 2.34 2.50 0.001057 2.374
4 2.36 2.58 0.003667 2.386
5 2.98 3.10 0.000733 2.992
6 2.84 3.00 0.003225 2.876
7 2.84 2.98 0.001806 2.858
8 2.34 2.46 0.000711 2.355
9 2.34 2.46 0.007368 2.350
10 2.94 3.16 0.002706 3.033
11 2.92 3.08 0.002754 2.968
12 3.02 3.16 0.000972 3.034

Total 32.005

Table 4.4. Code Generation Times for Nested Queries

| Query | Min Time | Max Time | Variance | Average Time |
Drawing Data 7.40 7.66 0.006349 7.475
Activ Data Dict 3.10 3.26 0.001704 3.131
Data Elem Data Dict 6.06 6.22 0.002748 6.103

nested version for each of the three queries. Note that for each query, the generation time
for the nested version takes less than one third the time for the equivalent query in the
relational version. The difference in code generation times can be attributed to two factors:
one, the relational version requires several subqueries to extract needed information and
two, the increased complexity of the plan trees for the relational versions of the queries
adversely impacts the speed of the code generator. Each of these factors is examined, in

turn, below.

The fact that there are many subqueries needed in the relational version means
that many functions of the code generator must be duplicated for each subquery, such as
opening the output file to hold the gererated query, checking to see if the main program

should be generated, and, if it is, generation of the main program. These actions may seem

4-4

T

Lt B Dumads

3
:
5
3
1
3
‘\41
E

Athraion s

Table 4.5. Comparison of Code Generation Times

| Query | Relational Generation Time | Nested Generation Time |
Drawing Data 24,261 7.475
Activ Data Dict 17.311 3.131
Data Elem Data Dict 32.005 6.103

trivial, but can increase the run time of the code generator for queries made up of many

subqueries.

Perhaps the most significant contribution to the code generation time is the com-
plexity of the query’s plan tree. In the relational version, there are 40 tables that make up
the database, as compared to only one table in the nested version. For both the relational
and nested versions, each table involved in a query must have at least one filescan node in
the plan tree. Thus, queries in the relational version are represented as multi-node plan
trees, with filescans for each table in the query and join nodes connecting them. However,
the plan trees in the nested version of the queries contain only one filescan node, since
all information is selected and projected from one table. The code generator sets up a
separate iterator for each filescan and join node in the plan tree. Clearly, for multi-node
plar trees, the job of codegen is much more involved. A good assumption seems to be that
this complexity accounts for a large portion of the higher code generation times for the

relational version as compared to the nested version.

The fact that the code generator always checks for the existence of sublist pointers
in list nodes is a design characteristic that hinders the relational version, since all sublist
pointers are null. However, elimination of this check would not make up the huge difference

in code generation times.

4.2.5 Comparison of Query Fzecution Times. Table 4.6 presents the query exection
figures for the relational version of the drawing query. Note that eight subqueries are
needed, so the total gives the average total time to execute the entire query. In the same
fashion, Tables 4.7 and 4.8 present the query execution figures for the relational versions of

the activity and data element data dictionary queries, respectively. Table 4.9 presents the

4-5

Aot e e O

Ao L Lawtas 15000 O 8 upund

N PR GO | TREDELL PR s L2

s S

sl

SRSV BN LT PROPPIE I

S LSNP PITPRETC R VAT BIWE T3 XU RAL PR

it i S S NI I

SRS

i
H
3
k)
3
3
F
H

Table 4.6. Execution Times for Relational Drawing Data Query
| Subquery # | Min Time | Max Time | Variance | Average Time |

1 0.04 0.30 0.003583 0.094
2 0.06 0.40 0.004901 0.172
3 0.06 0.30 0.003954 0.122
4 0.06 0.18 0.001536 0.091
5 0.04 0.28 0.003491 0.098
6 0.04 0.18 0.002454 0.083
7 0.04 0.38 0.006732 0.165
8 0.04 0.24 0.002173 0.084

Total 0.660

Table 4.7. Execution Times for Relational Activity Data Dictionary Query
| Subquery # | Min Time | Max Time | Variance | Average Time |

1 0.02 0.10 0.000500 0.045

2 0.02 0.04 0.000067 0.024

3 0.04 0.14 0.000854 0.073

4 0.06 0.54 0.009663 0.170

5 0.08 0.32 0.003074 0.140

6 0.06 0.22 0.002754 0.108
Total 0.702 |

NRM version query execution figures for the drawing query, activity data dictionary query,
and the data element data dictionary query. Again, the low variance is a good indication

that the workload was the same across the board for all runs.

Table 4.10 compares the query execution times for the relational version against the
nested version for each of the three queries. As with code generation, the nested query
exection time is less than the relational query execution time. Thé‘ difference in query
execution time can be attributed to two factors: one, the large number of joins in the
relational version, and two, increased disk access time due to a lack of clustering in the

relational version.

As stated earlier, all information is contained in one table in the nested version,

whereas the relational version breaks the IDEF, language data into 40 rormalized tables.

4-6

Table 4.8. Execution Times for Relational Data Element Data Dictionary Query
| Subquery # | Min Time | Max Time | Variance | Average Time |

1 0.06 0.20 0.001915 0.121
2 0.04 0.22 0.002504 0.071
3 0.04 0.18 0.001637 0.075
4 0.06 0.26 0.002580 0.103
5 0.04 0.16 0.001746 0.081
6 0.06 0.24 0.002942 0.095
7 0.06 0.18 0.001637 0.095
8 0.04 0.16 0.001853 0.080
9 0.04 0.14 0.001246 0.084
10 0.08 0.34 0.003515 0.119
11 0.12 0.32 0.002699 0.194
2 0.14 0.24 0.000500 0.145

Total 1.263

Table 4.9. Query Execution Times for Nested Queries

| Query | Min Time | Max Time | Variance | Average Time |
Drawing Data 0.48 1.00 0.024399 0.551
Activ Data Dict 0.52 0.86 0.004037 0.695
Data Elem Data Dict 0.74 0.92 0.001367 0.769

Fach time data is correlated between two or more tables, a join is executed. While no
joins are required in the nested version (since all data is contained in one table), some
of the relational subqueries require as many as four joins. As stated in Chapter 3, the
join method implemented is a nested loops join method, which is not very efficient. For
each tuple of one relation, each tuple of the second relation is checked to see if the join
criteria are met. A more efficient algorithm such as a sort-merge join or a hash join would
probably speed up the execution time of the relational version. However, even with the
speedup realized with a more efficient join algorithm, the execution time of the relational
version would probably still exceed that of the nested relational version, since no joins are
required in the nested relational version. The difference in execution times is not as great

as expected, probably due to the limited number of tuples in the relational tables. As the

4-7

Table 4.10. Comparison of Query Execution Times

l Query | Relational Execution Time | Nested Execution Time |
Drawing Data C.660 0.551
Activ Data Dict 0.702 0.695
Data Elem Data Dict 1.263 0.769

size of the database grows, the execution times should increasingly favor the nested version

of the database.

The second reason for the faster execution of the nested queries is that disk access
times are longer for relational queries since tables are not automatically clustered on disk.
The EXODUS storage manager automatically clusters tuples of a collection on disk to
decrease access time. Of course, this means that attributes in the tuples are clustered,
including relation-valued attributes. Since the nested version has only one overall table
(with several nested tables), all data in the nested version should theoretically be clustered
on disk. However, in the relational version, no explicit clustering is specified. The EXODUS
storage manager allows “near” hints as to how to cluster data, but none are specified for
the relational version. If these are used, the execution time for the relational version might

realize some speedup.

4.2.6 Summary of Comparison. The goal of this comparison was to demonstrate
the empirical advantage of the NRM over the relational model for the storage and retrieval
of complex data. This advantage was demonstrated by comparing the two models on code
generation time and query execution time. In both areas, the nested version outperformed
the relational version, particularly in code generation time. However, between generation
and execution time, execution time is most important. This is because queries will be
generated once, but will be executed many times. However, the performance of both

activities must be considered, since both play a crucial role in determining the processing

speed of the Triton system.

IRLTRLIRO

4.8 Evaluation of the EXODUS Toolkit in this Research Lffort

Implementation of a DBMS is not a trivial undertaking, but the use of extensible
systems has eased some of the burden of this task. The use of the EXODUS extensible
toolkit reduced the development time of the Triton nested relational database system.
The following subsections present the advantages and disadvantages of using the EXODUS

toolkit in the development of the Triton system by specifically evaluating the following:

e collections

o classes

e persistence

¢ data representation
e optimizer generator

¢ storage manager

4.8.1 Collections. The Triton system is built on the nested relational data model,
allowing relation-valued attributes in relations. The nested relational data model is mapped
very nicely using the collection generator class supplied by EXODUS in the E program-
ming language. Relation-valued attributes are represented using collections of collections.
Unfortunately, EXODUS only provides the capability for sequential scanning of collections,
making access via a search key slow for large relations. The only way around this short-
coming is to build indexes on every frequently accessed or sufficiently large relation and

nested relation.

The E programming language does not permit subclasses to be derived from the
collection class, which is a limitation. Since a collection is an unordered group of objects,
assume we want to derive a subclass of the collection class called ordered.collection, which

is an ordered group of objects. E does not allow this derivation from the collection class.

A good performance aspect of the collection class is that items in a collection are
clustered on disk, including subcollections. This automatic clustering reduces access time

and frees the implementor of having to worry about the grouping of data on disk.

— e

4.8.2 Classes. The use of classes is an excellent object-oriented technique for hiding
the actual representation of data and allowing access to subobjects through predefined
constructor and member functions. The use of generator classes should prove very useful
in the development of special indexing techniques for the Triton system. This is because a
generic index (such as B*-tree) can be developed using a generator class which takes the
type as a parameterized input. A specific index is then instantiated for a particular type

using the generator class specification.

4.8.8 Persistence. In E, persistent objects are declared explicitly by using the key-
word persistent before the declaration of the object. However, only db types can be
declared persistent, since the use of a db type specifies that the object is a disk object
as opposed to a main memory object. Unfortunately, every subcomponent of a dbclass
must be a db type, which can cause some problems if the database implementor chooses to
change a main memory class to a persistent class; not only does the class have to be changed

to a dbclass, but all subobjects in the class must be changed to their db counterparts.

4.8.4 Data Representation. As stated in Section 4.3.1, nested relations are conve-
niently mapped using the E collection class by mapping them directly into the underlying
programming language. This allows the relation definitions (the *.e and *.h files) to be
compiled into object files using the E compiler. Compiled queries are linked with the
object files containing the relation definitions and executed to perform the query. The
advantage of this method is that queries are executed quickly, since they are in machine
code. However, the long compilation and linking time makes this method prohibitive for

dealing with ad hoc queries.

4.8.5 Optimizer Generator. At the present time, Triton’s optimizer component has
not been developed. However, the intention is to use the EXODUS optimizer generator to
generate this compenent. The EXODUS optimizer generator takes as input (1) a set of
operators, (2) a set of methods that implement the operators, (3) transformation rules that

describe equivalence-preserving transformations of query trees, and (4) implementation

4-10

PR T R

kg

PIL S S e Y LI

T T PP SO R S,

SR SRR PR S

rules that describe how to replace an operator with a specific method. Using these rules,

a specific optimizer is generated for the particular application.

We chose to use the EXODUS optimizer generator for Triton because the relational
algebra used by the system lends itself to EXODUS’ rule-based method. This modular
approach to database development will reduce the amount of code required for implemen-
tation of the Triton system. The only unique code Triton’s developers will need to write
will be the additional functions that are called by the optimizer when implementing a

specific operator or access method. For example, take the following implementation rule:
project (loops_join (1,2)) by loops_join (1,2) combine_ljp;

This means that if there is a loops_join followed by a projection, it can become a special
case of loops_join that will perform the join and the projection in the same step. To do
this, the function combine_ljp is called to combine the projection list and the argument list
of the loops_join. The function combine_ljp is an example of the code that must be written
by the Triton system developers. However, this is far less involved than developing an
optimizer from scratch. With the use of accurate cost functions, the geneiated optimizer

should perform as well as a custom-built one.

4.3.6 Storage Manager. The use of the EXODUS storage manager greatly reduced
the development time of the Triton system by freeing tLe developer from worrying about
Triton’s storage component. The storage manager's procedural interface allows access to
database objects without having to know how they are actually being manipulated. As
an example, persistent objects are automatically mapped to permanent storage locations
through the use of the persistent keyword. Data clustering is performed by using the
collection class and is transparent to the developer. Access to collections of objects is pro-
vided by the E programming language via built in procedure calls to the storage manager,

such as scan, in ... new, and delete.

4.8.7 Overall Evaluation of the EXODUS Toolkit. EXODUS was very helpful in the

development of the Triton system. In particular, the E programming language elegantly

4-11

Ny

maps nested relations using the collection class. While EXODUS only supplies sequential
access to collections, implementation of indices should be simple using generator classes.
The storage manager handles persistence and automatically clusters nested relations on
disk. In addition, the storage manager’s procedural interface made interaction with the
storage manager virtually transparent. Use of the EXODUS optimizer generator should

greatly reduce the time it takes to create Triton’s optimizer.

4.4 Summary

The first half of this chapter demonstrated the viability of the nested model by
compaiing the performance of the nested and relational representations of IDEJF, language
data based on code generation time and query exection time. In both areas, the nested
version performed faster. The second half of this chapter discussed the advantages and
disadvantages of using the EXODUS toolkit in the developement of the Triton nested

relational database system.

V. Conclusions and Recommendations

5.1 Overview

This chapter summarizes and draws conclusions about the work presented in this
thesis. Recommendations for further work as it pertains to the Triton nested database

system is also discussed.

5.2 Summary of Research

The goal of the research presented in this thesis was to develop a backend to the
Triton nested database system to manipulate the data in the database as specified by
some query. The goal was not to provide a plethora of access methods, but to give Triton
the ability to process queries of any type (except for data restructuring queries) and to lay

the foundation for future work in this area.

The work accomplished in this research effort may be summarized as follows:

1. Design and implementation of the operator methods of the Colby algebra to handle
multiple levels of nesting, including:
¢ The filescan method that implements a project and/or a select
o The loops_join method that implements a join as well as a project and/or select

2. Design and implementation of the access methods to modify data in the database,

including:
o The store_values method that adds data to a relation at any level or levels of
nesting

o The modify method that modifies data in a relation at any level or levels of

nesting

¢ The delete method that deletes data from a relation at any level or levels of

nesting

o The create_rel method that adds a new relation to the database

5-1

ST IN

S b,

Ao da

PR T L R T S S T L DL

UYL TP R e S

LIRS v gy

e The drop.rel method that deletes a relation from the database

and access methods
4. Testing of methods and code generator

3. Design and implementation of the code generator, codegen, to implement the operator
5. Compat.son of the performance of the nested relational model versus its normalized

(1NT) version using the operator methods and code generator:

o Development of an E representation of a sample set of relational IDEF, language

data (23)
o Development of an E representation of nested relational IDEF, language data (23)

e Design of programs to load data into both representations of the IDEF, language

data

¢ Creation of queries for both representations to evaluate performance of the NRM

against the traditional relational model

¢ Comparison of the NRM against the relational model based on code generation

time and query execution time

6. Discussion of the advantages and disadvantages of using the EXODUS toolkit in this

research effort

5.8 Conclusions

By using Triton to store a nested and relational representation of CASE data and
using the methods implemented in this research to query that data, we fonnd that the
nested relational model outperforms the relational model in terms of code generation time
and query execution time. These results demonstrate the viability of the nested relational
model for the representation of complex data. In addition, the EXODUS toolkit provided
several necessary tools that greatly reduced the development time of the Triton system.
However, the use of the EXODUS toolkit did constrain this development, and future efforts
must attempt to overcome these constraints. With this in mind, the following section

recommends possible areas for improvement in the Triton system.

5-2

5.4 Recommendations

As stated earlier, the purpose for research presented in tlus thesis was to give Triton
the ability to process queries of any type (except for data restructuring queries) and to
lay the foundation for future work in this area. Actions must be taken to bring the Triton

query processing system up to full capability. These actions include:

e Design of the nest and unnest operator methods to implement the data restructuring

actions of the Colby algebra

o Generation of the optimizer to properly optimize the query tree and call appropriate

methods

Additional actions need to be taken to give Triton more than just a cursory set of

operator and access methods. This includes:

o Design of additional operator methods, such as merge_join, or indez_join to more

efficiently handle the join operator

¢ Development of indexing techniques and access methods to use them:

— I recommend looking at Bertino and Kim’s work in this area (3), but especially

recomrsend implementing a similar indexing strategy as the one used by the

ANDA system (11)

As a performance issue, sequential access to the system catalogs is inefficient. I
suggest either establishing indices intc the catalogs, or implementing schema information
as persistent structures in main memory, as is done in the Ariel system (14). This would

speed up query execution substantially, especially as the size of the system catalogs grows.

I recommend that future work address the possibility of making a query interpreter in
addition to the code generator. This would make testing easier on application developers.
The interpreter would have to be linked with the schema definition files for all relations in
the database. If such an effort is undertaken, the developer should consider implementing

the methods as a class hierarchy of plan objects as is done in Ariel (14).

Appendix A. Colby Relational Algebra

The use of the nested relational model requires the development of operatots to
manipulate nested data. Latha S. Colby (9) devised a recursive algebra for nested relations
that builds on the traditional relational algebra operators. Her operators allow the retrieval
of information from any level of nesting in a relation without first “flattening out” the
relation to fit ‘b standard relational model. To pe it nesting, Colby employed set
operators and redefined the select ('), project (7) and join (™) operators of the relational
model and introduced two new operators, nest () and unnest (u). ror the purposes of
this exposition, I assume that the select, project and join operators are understood as they

apply to non-nested relations.! Their use by Colby is defined below.

A.1 Select (o).

The select operator is used to extract tuples from the relation that satisfy a specitic

selection criteria. Its structure is defined as
o (relationgondition (select list))

The select list is used to indentify conditions on relation-valued attributes (RVAs). The

select list can be null or has the following recursive form:
(RVA condition (select list))

For example, using the database schema provided in Figure 1.3, a query to find all

the employees who are older than 35 that have male children is written as

o (employecemp_age>3s (childrenses=pr))

which yields the relation shown in Figure A.1.

1For a definition of the relational algebra operators for non-nested relations, see (8).

dept | emp_name | emp.age | emp_ssn children

child_name | child_age | sex

Adv | T. Therrien 43 555-12-3434 | John 13 M
“fatthew 11 M
Pers | C. Dunlap 37 624-35-8152 | George 5 M

Figure A.1. Employees Over 35 With Male Children

| emp.name | child.name |

John Smith Jeramie
Todd
Michael Taylor Susan
Tina Therrien Laura
John
Matthew
Carla Dunlap George
Janis

Figure A.2. Project Out Employee and Children Names

A.2 Project (7).

The project operator is used to extract specific attributes of a relation. Its structure

is defined as

7 ((project list) relation)

where a project list indentifies the list of attributes to be extracted from the relation. If
the project list contains any relation-valued attributes, those attributes may have their

own project list. For example, a qu ty to retrieve all employees’ names and their childrens’

names from the employee relation s written as
7 ((emp-name, children (child_name)) empioyee)

which yields the relation shown in Figure A.2.

name classes
course | grade

Jeramie Math B

Science BT
Cheryl | Chemistry | BY
Comp Sci | A™

Math B

Laura Poli Sci C
John Biology | Bt

English B~

Mike Physics A
Math A

Matthew | Chemistry | B*
Science B

{ English A~

Figure A.3. The Student Relation

A.3 Join (M).

The join operator joins a relation to another relation or to any relation valued at-

tribute (RVA) of a relation. Its structure is as follows:
My (relationy (join path), relations)

The condition is specified in the 6 portion of the query. If the join path is null, the two
relations will be joined at the highest level. However, the join path may identify the level

of relation; where the join is to take place. The join path is defined as:
(RVA of relation; (join path of RVA of relation;))

For example, suppose there is a separate student relation as shown in Figure A.3 in
addition to the nested employee relation. The query to join the children attribute of the
employee relation to the student relation where children naine is equal to the student name

is
M hild_name=name (employee (children), student)

which yields the relatior shown in Figure A.4.

A-3

dept | emp.name | emp.age | emp_ssn children
child.name | child.age | sex classes
course | grade
Mktg Smith 27 237-46- | Jeramie 8 M Math B
3567 Science Bt
Adv | Therrien 43 555-12- Laura 18 F Poli Sci C
3434 John 13 M | Biology | BT
English B~
Matthew 11 M | Chemistry | BT
Science B
English A~

Figure A.4. The Employee Relation Joined (on Children) to the Student Relation

| dept | emp_name | emp_age |

empssn__| child_name | child_age | sex |

relation into a nested version of the relation. Its structure is

v attribute list — RVA name (relation)

would be written as

v child name, child_age, sex — children (employee)

A-4

Mktg | J. Smith 27 237-46-3567 | Jeramie 8 M
Mktg J. Smith 27 237-46-3567 Todd 4 M
Rsrch | M. Taylor 31 395-73-8901 Susan 3 F
Adv | T. Therrien 43 555-12-3434 Laura 18 F
Adv | T. Therrien 43 555-12-3434 John 13 M
Adv | T. Therrien 43 555-12-3434 | Matthew 11 M
Pers | C. Dunlap 37 624-35-8152 | George 5 M
Pers | C. Dunlap 37 624-35-8152 Janis 3 F
Figure A.5. The Flat Employee Relation
A.4 Nest (v).

The nest operator is a restructuring operator that groups certain specified attributes of a

where the attribute list specifies the attributes to be nested under the title of the RVA name.

For example, a query to take the flattened version of the employee relation as shown in

Figure A.5 and nest child_.name, child.age and sez into a relation valued attribute called children

dept | emp_name | emp_age emp_ssn children
child-name | child_age | sex
Mktg | J. Smith 27 237-46-3567 | Jeramie 8 M
Todd 4 M
Rsrch | M. Taylor 31 395-73-8901 Susan 3 F
Adv | T. Therrien 43 555-12-3434 Lavra 18 F
John 13 M
Matthew 11 M
Pers | C. Dunlap 37 624-35-8152 | George 5 M
Janis 3 F

Figure A.6. The Nested Employee Relation

which creates the nested version of the employee relation as shown in Figure A.6.

A.5 Unnest (k).

The unnest operator is the inverse operation of the nest operator. It flattens out a relation
by duplicating the atomic attributes of a tuple for each occurance of the relation valued attributes.

Its structure is as follows:
u relation-valued attribute (relation)

To illustrate its operation, a query to take the nested version of the employee relation as

shown in Figure A.6 and flatten it would be written as:
g children (employee)

creating the unnested or flattened version of the employee relation as shown in Figure A.5.

A-5

Appendix B. Definition of Data Structures

The design and implementation of the Triton nested databage system utilizes several
data structures first developed by Mankus (21) that I modified for my use. Because these
structures play such a vital role in understanding the design of my operator and access

methods, each is explained in detail.

B.1 Plan Node

The output of the query optimizer is a pointer to the plan tree that structurally

represents the user’s request. Figure B.1 shows the structure of a plan node.
The fields of the plan node are used as follows:
e method - specifies the operator or access method to be used (for example filescan,
loops_join, create.rel, or store.values, to name a few)

e argument.name — the name of the input relation (used only if the method is

FILESCAN)

o argument.reltype - the type of the input relation (used only if the method is
FILESCAN)

e argument.struct.num — an integer field that records the greatest structure number of
the temporary relation templates that hold the intermediate data for answering the

query

o argument.pred — a pointer to a predicate tree of pred nodes which represents the

conditions on the highest level of the nested relation
e argument.list - a linked list of l/ist nodes which identify attributes

e argument.aux_pred — an additional place to hang a condition (used only in the

LOOPS_JOIN method when a selection is simultaneously taking place)

» argument.auxlist - an additional place to hang a linked list of list nodes (used only

in the LOOPS_JOIN method when a projection is simultaneously taking place)

e input[0] and input[1] - pointers to plan nodes

B-1

L s b S a

et

e

3

PRSP

KR Pl RA L T e R 2

[TPTRCIWCE S

method

name

reltype

struct.num

pred
list

aux.pred

+tmogeEma

auxlist

input[0] | input[1]

Figure B.1. A Plan Node

over | ot
1 | refname ref_name 11
? uflag uflag lgl
t | op.type op-type |1

Figure B.2. A Pred Node

B.2 Pred Node

The pred and auz_pred portions of the plan node can each point to a tree of pred

nodes that represent query conditions. Figure B.2 shows the structure of a pred node.
The fields of the pred node are used as follows:
e oper - identifies the operator which can be AND, OR, NOT, LES (less than), GRT

(greater than), LEQ (less than or equal to), GEQ (greater than or equal to), EQL
(equal to), and NEQ (not equal to)

e constant.on_right - boolean variable to identify whether the value stored in the right

operand is a constant or a variable

e refname - records the relation name that the attribute identified in the operand

portion pertains to

e uflag — a union flag to record whether the value stored in the op.type field is a

character pointer, integer, float or a pointer to another pred node

e op.type — holds either a character pointer, integer, float, or a pointer to another pred

node

The pred node has a left and right operand, which are inputs to the operator. All
operators are binary except for the NOT operator, which is unary and only uses the left
operand. If the operator is an AND, OR, or NOT, the op.type holds a pointer to another
pred node; otherwise, it will hold either a pointer to a character, an integer value, or a
float value. The left operand holds the name of the attribute for the condition, while the
right operand holds the value of a constant or may hold the name of another attribute in
the relation. If the latter case is true, the value of the constani_on.right field would be

false.

To demonstrate the structure of a predicate tree, the predicate
emp-age>40 and dept=“Marketing”

is structurally represented in Figure B.3. In this figure, two pred nodes are used to represent
the two conditions, while a third pred node connects these conditions with an AND. Since
the two attributes emp_age and dept are being compared to a constant value, the value of
constant.on_right for both of the nodes at the bottom of the tree is irue. The left operand
is always the name of an attribute, thus the left op_type field will always hold a character

value, which is the name of the attribute.

B.8 List Node

The list and auz.list portions of the plan node can each point to a linked list of list
nodes which represent attribute lists for use in performing projections. Figure B.4 shows

the structure of a list node.

The fields of the list node are used as follows:

e attr — points to an atirdesc node which holds a description of the attribute and is

defined in detail below

B-3

)

i ke s 0

LA

AND FALSE
PRED | PRED
Z N
GRT TRUE EQL TRUE
employee employee
CHAR INT CHAR | CHAR
emp.age 40 dept Marketing

Figure B.3. A Predicate Tree

attr cond sublist next

Figure B.4. A List Node

e cond - points to a predicate tree of pred nodes (only used if the attribute is relation-
valued and there is a selection condition that applies to the attributes of the relation-

valued attribute)

e sublist - points to a sublist of list nodes (only used if the attribute is relation-valued
and only some of the attributes of the relation-valued attribute are being projected

out)

¢ next — points to the next lis¢t node in the attribute list

As stated above, the list structure represents an attribute list. Relation-valued at-
tributes may have a condition (which points to a predicate tree of pred nodes) and a sublist
(which points to the attributes of the relation-valued attribute that are to be projected
out). 'f the attribute is relation-valued and the sublist is null, all attributes of the relation-
Vaiue “ibute are to be projected out. ‘L'hrough the use of sublists, projections can be

represented at any level of nesting in the relation. The list structure can be used to record

a selection, projection, or both a selection and a projection.

B-4

name

type
size

value

rvatype

parentrel

project

Figure B.5. An Attrdesc Node

B.4 Attrdesc Node

The attr field of the list node points {0 an aitrdesc node which holds information

I RN 1 YT £ AT R C T LU .2 PR W0 S . o WL WA A KA S-S e S, TR TP

about the attribute. Figure B.5 shows the structure of an atirdesc node.

The fields of the atirdesc node are used as follows:

4
3
o
|
i
3

<
By
g

¢ name - the name of the attribute

e type - the type of the attribute (CHAR if the attribute is a character pointer, INT
if the attribute is an integer, FLOAT if the attribute is a float, or PREV_DEFINED

if the attribute is relation-valued)

e size - the number of characters if the type is CHAR, the number of bytes if the type
is INT or FLOAT (if the type is PREV_DEFINED, then size is 0)

e value - holds a character string if the type is CHAR, an integer if the type is INT,
a float if the type is FLOAT (used only to specify the value of an attribute if a new

tuple is being added to the relation or if the value of the attribute is being changed)

o rvatype — holds the name of the type of tuple to be stored in the relation-valued

attribute (only used if type is PREV_DEFINED)

e parenirel — holds ihe name of the relation to which this atiribute belongs

» project — an integer value that holds the temporary relation number (used when a
temporary relation template is made to hold the intermediate results of a projection

or a join)

Appendix C. Data for the Employees Relation

The following files specify the schema shown in Figure C.1 for the employees nested
relation. The employees relation is a collection of tuples of type emp. Children and projects
are relation-valued attributes of emp, and foys is a relation-valued attribute of children.
The employees relation is used in the body of this thesis to demonstrate the function of

the operator and access methods.

The schema for the nested employees relation is contained in a series of files. There
is a .e and a .h file describing the emp, child, toy, and project schemas. There is also a .e
and .k file describing the overall employees schema. The .h file contains the structure of
the relation, while the .e file contains the code to implement the constructor and member
functions. Separating the schemas into pairs of files was necessary to ensure the schemas
are not multiply defined if they are used more than once in a relation. In the code that
follows, only the .e file for the emp relation is given. In the interest of space and because
the implementation of the constructor and member functions for the child, toy, and project

relations are nearly identical, child.e, toy.e, and project.e are not given here.

children projects
name | age | dno toys age | name | name | number
color | name

Figure C.1. Schema for the Employees Nested Relation

[KR FRARR AR A A A AR AAAFFAR A A K KA KKK F AR A AR AFAF A [
/* The following is the content of employee.h %/
[xxxkRRRR AR AR KRR ARk Rk Kok ok KRRk kKoK [
#ifndef EMPLDYEES_H

#ifndef EMP_H

#include "emp.h"

#endif

dbclass empRVA:collection[emp];

#define EMPLOYEES_H
#endif

[k skokok ko sok kR skok Rk okok Rk Rk kKR ok kR Kok /
/* The following is the content of employee.e %/
[xxskkskokskskoiokkskokkoksksokskkokkokokkokkok okl dokk ko ok skok ok kokokok /
#include <stream.h>
#include <stdio.h>

#ifndef EMPLOYEES_H
#include "employees.h"
#endif

persistent empRVA employees;

[rskrckioobkokokkokookockorokokkololokokaloroklolokkskolotok kokokokokok ok /
/* The following is the content of emp.h x/
[Hsskokaokokkksktokiokkok ok ok kol ok ol ok solokokskokskok ok stk sk kokok ok /
#ifndef EMP_H

#ifndef CHILD_H

#include “child.h"

#endif

#ifndef PROJECT_H
#include "project.h"
#endif

dbstruct emp {
dbchar name([32];
dbint age;
dbint dno;
dbclass childRVA:collection[child];
childRVA children;
dbclass projectRVA:collection[project];
projectRVA projects;
public:
emp (char *, int, int);
char * get_name();
void change_name (char *);
int get_age();
void change_age (int);
int get_dno();
void change_dno (int);
void print (emp %);

};

#define EMP_H
#endif

[Rxroksokk Rk ok kR kAR Rk ko Rk KRR kkok Kook kR Rk ok
/% The following is the content of emp.e x/ p
[k kR skok kR sokk ok sk skk ok okl ok ok ksksk koo ok /
#include <stream.h>
#include <stdio.h>

e et

St Lo DR STl

#ifndef EMP_H
#include "“emp.h"
#endif

B AT AT

0 181 st RN

emp::emp (char * nameAtom, int ageAtom, int dnoAtom) {
dbchar * dest;
dest = name;
while (*dest++ = *nameAtom++);
age = ageAtom;
dno = dnoAtom;
}

L

LS (A R RO ST NT -/

char * emp::get_name() {
dbchar * source = name;
char * dest = new char[32];
char * start = dest;
while (*dest++ = *source++);

¥ Doy J1o

s,

return (start); :

} b
:

void emp::change_name (char * nameAtom) { :

dbchar * dest; {
dest = name; 3
while (*dest++ = *pameAtom++);)

} :

int emp::get_age() {
return (age);

}

PSS SO S I

void emp::change_age (int ageAtom) {
age = ageAtom;

3

LR L I P

int emp::get_dno() {
return (dno);

}

+
M
.4
¢
3
3
i
:
]
¥

void emp::change_dno (int dnoAtom) {
dno = dnoAtom;
}

void emp::print (emp * emp_ptr) {
cout << form ("emp_name: %s\n", emp_ptr->get_name());
cout << form ("emp_age: %d\n", emp_ptr->get_.age());
cout << form (Yemp_dno: }d\n", emp_ptr->get_dno());
emp & ewp.ref_ptr = * emp_ptr;
iterate (child * child_ptr = emp_ref ptr.children.scan())
child_ptr -> print (child_ptr);
iterate (project * project_ptr = emp_ref_ptr.projects.scan())
project_ptr -> print (project_ptr);
}

sk KRk Rk kkkokkokRok ok ko oRkkok ook dokk R skok gtk
/% The following is the content of child.h */
[Fkrkskkk kol okskokokokokokok ok ok kaokkoksok ok sktokoktokoksk kol ook ok ok /
#ifndef CHILD_H

#ifndef TOY_H

#include "toy.h"

#endif

dbstruct ~hild {
dbclass toyRVA:collection[toy];
toyRVA toys;
dbint age;
dbchar name”32];
public:
child (int, char *);
int get_age();
void chance .age (int);
char * get_name();
void change_name (char *);
void print (child *);

e s M gt da s

Lo Pt b e 2

et gl AR e

N o

RAAER I

3D e, Pt B S TN o i S 1AL w80 T2 et T K

SRR

PRECREIE

#define CHILD_H

#endif
[FFASIAIAAAAF A AR A A AR AR KKK AR A KA AARK KA KKK AAK Sk [
/% The following is the content of toy.h */

[k ok kR kR kR Rk kokolok ok kR Rok Rk ko /
#ifndef TOY_H
dbstruct toy {
dbchar color([32];
dbchar name([32];
public:
toy (char *, char *);
char * get_color();
void change_color (char *);
char * get_name();
void change_name (char *);
void print (toy *);

[RER kR R KRR AR AR AR KRR R Rk Rk R kR koK Kk
/* The following is the content of project.h */
[HEskkk ookl kKRR kR sk kR sk ook kR ok sk ok Kok [
#ifndef PROJECT_H
dbstrict project {

dbchar name([32];

dbint number;
public:

project (char *, int);

char * get_name();

void change_name (char *);

int get_number();

void change_number (int);

void print (project *);

};

#define PROJECT_H
#endif

C-5

SR RE™ Sl mr 4 Wl a -

Appendix D. Data for the Products Relation

The following files specify the schema shown in Figure D.1 for the products nested
relation. The products relation is a collection of tuples of type product. Manufacturers is
a relation-valued attribute of product. The products relation is used in the body of this

thesis to demonstrate the function of the loops.join operator method.

The schema for the nested products relation is contained in a series of files. There
is an .e and an .h file describing the product and manufacturer schemas. There is also an
.¢ and . file describing the overall proJucts schema. The .k file contains the structure of
the relation, while the .e file contains the code to implement the constructor and member
functions. Separating the schemas into pairs of files was necessary to ensure the schemas
are not multiply defined if they are used more than once in a relation. In the code that
follows, only the .e file for the product relation is given. In the interest of space and because
the implementation of the constructor and member functions for manufacturer are nearly

identical, the content of manufacturer.e is not given here.

name | price manufacturers
location | name | phone

Figure D.1. Schema for the Products Nested Relation

[Hkrkokiokkorkokok ok tokokokkokok kokok ook skokkolok kb kokskokkoksokoksokokskok ok f
/* The following is the content of products.h */
[Fkrdoksokokskokk okl bk kool kokkkoopkiokkoioiokokskolokokokkokokokkokskok [
#ifndef PRODUCTS_H

#ifndef PRODUCT_H

#include "product.h"

#endif

dbclass productRVA:collection[product];

#define PRODUCTS_H
#endif

[FFFRAAFAARRAAA IR KA F AR AR AAAAAAAAKFAAAAAAKAAAA KA AR A [
/* The following is the content of products.e */
[HRFKIAA KK F KKK AR AIAA A A KA AAAARAAAAAK AR KA A A A K [
#include <stream.h>
#include <stdio.h>

#ifndef PRODUCTS_H
#include "products.h"
#endif

persistent productRVA products;

[Frsokkorokolokn dkskoktok ook koktokok sk okl ok ok ok kool sokokkokkok ok /
/* The following is the content of product.h */
[FRkkckkkokokokokkkolokkorkksokolok ok kskkkokskksokRokok ok sk kok Kook kok
#ifndef PRODUCT_H

#ifndef MANUFACTURER_H

#include "manufacturer.h"

#endif

dbstruct product {
dbchar name[32];
dbfloat price;
dbclass manufacturerRVA:collection[manufacturer];
manufacturerRVA manufacturers;
public:
product (char *, float);
char * get_name();
void change_name (char *);
float get.price();
void change_price (float);
void print (product *);

};

#define PRODUCT_H
#endif

et ot g b

L i) e b L

o Skt

g G i e b

L gl

A

EINIRE

b ftab b 10

T sl

v

[ik kokkobkkskkok ok kokRokk kol okkokskolokskkokok dokok dok /
/¥ The following is the content of product.e */
[rskksorookcolkokkokskok ok skokokskkokoskok ksl tokokokoskakokok ok sk dokok Kok /
#include <stream.h>
#include <stdio.h>

#ifndef PRODUCT_H
#include “product.h"
#endif

product::product (char * nameAtom, float priceAtom) {
dbchar * dest;
dest = name;
while (*dest++ = snameAtom++);
price = priceAtom;

3

char * product::get_name() {
dbchar * source = name;
char * dest = new char[32];
char * start = dest;
vhile (*dest++ = *source++);
return (start);

3

void product::change_name (char * nameAtom) {
dbchar * dest;
dest = name;
while (*dest++ = *nameAtom++);

3

float product::get_price() {
return (price);

3

void product::change_price (float pricehAtom) {
price = priceAtom;

3

D-3

void product::print (product * product_ptr) {
cout << form ("product_name: %s\n", product_ptr->get_name());
cout << form ("product_price: %f\n", product_ptr->get_price());
product & product_ref_ptr = * product_ptr;
iterate (manufacturer * manufacturer_ptr = product_ref_ptr.
manufacturers.scan())
manufacturer_ptr -> print (manufacturer_ptr);

}

JkEskskrskokkork ko tokskkok ok ook kokok ok ok sokokokskodokoksk kR kol ok ok ok /
/¥ The following is the content of manufacturer.h */
[Aok sokkokokdokkoksk ok sk okok ok ok sk ook sk skok dokok sk sk ok ok sk sk ok sk ok sk ok K okok
#ifndef MANUFACTURER_H
dbstruct manufacturer {

dbchar location[32];

dbchar name[32];

dbint phone;
public:

manufacturer (char *, char *, int);

char * get_location();

void change_location (char *);

char * get_name();

void change_name (char *);

int get_phone();

void change_phone (int);

void print (manufacturer *);

};

#define MANUFACTURER_H
#tendif

Appendix E. Filescan Method

The following code implements the filescan query depicted in Figure 3.6 and described
in Section 3.3.1. In the Triton system, the code in this appendix would be written to a file
called query.e by the E code generator codegen to implement the query. The comments
that appear in the code in this appendix are not generated by codegen but have been put

in by the author to explain the operation of the filescan.

#include <stream.h>
#include <stdio.h>

#ifndef EMPLOYEES_H
#include "employees.h"
#endif

extern persistent empRVA employees;

[k R KRR AR KRR KR KRk kKRR kR ok ook Rk ok sk sk ok
/* Temporary relation template -- holds the projected */
/* attributes of the toys relation. */
SRk AR R RA KRR AR KRR ARk kK kR ok ook kooksk kR ok kkok ok [

dbstruct tempi {
dbchar name[32];
public:
templ (char *);
char * get_name();

};

[3Kk kR ok ok ok ok ok ko sk ok Kok ok ok oK sk ok ok ok ok sokkoskok skokok /

/* Constructor function code for tempi */
[k kKoK koksk kiR skk Aok sk ok sk ok ok dekskok ko sk kokok sk sksk sk kok ok f

tempi::templ (char * nameAtom) {
dbchar * dest;
desi = name;
while (*dest++ = *nameAtom++);

3

/**/

/* Code for implementing member function of templ %/
[Fsksksokdokkkkk Rk ok sk sk Rk ok ok kol skkok ok ckok okl kK dkok

char * tempil::get_name() {
dbchar * source = name;
char * dest = new char[32];
char * start = dest;
while (*dest++ = *source++);
return (start);

X

JHR kR ko ok KRR KRR RO RR SRR R R Rk koK /
/* Temporary relation template -- holds the projected */

/* attributes of the children relation. */
[HkrskorsokosokoksokokskokokkskokoRok ook ook sk okok ok sk okskok K sk ko sk ook ook okokok /

dbstruct temp2 {
dbchar name[32];
dbint age;
dbclass tempiRVA:collection[tempi];
tempiRVA templ_rels;
public:
temp2 (char *, int);
char * get_name();
int get_age();
s

/***/

/* Constructor function code for temp2 */
[3ksokssokkokokokorskskokokok ok Rolokolok ok kolokskokskkok ok kokok ok ok /

temp2::temp2 (char * nameAtom, int ageAtom) {
dbchar * dest;
dest = name;
while (*dest++ = *nameAtom++);
age = ageAtom;

¥

E-2

JARRksk sk sk ek ok sk sk sksk sk skok sk sk ok ek skok sk sk sk ek okl sk ok sk ok ok ke sk sk ok ke skokokok sk ok sk ok f

/* Code for implementing member functions of temp2 */
[FRskrskrkkokokokokkokokkksokokok ok stoloktok okl ok ok kkolokokrok ok stokskokokokokofok /

char * temp2::get_name() {
dbchar * source = name;
char * dest = new char[32];
char * start = dest;
while (*dest++ = *source++);
return (start);

}

int temp2::get_age() {
return (age);

}

[k sokskskk Rk kR sk ko sk ok ok sk ko kR solokok Rk ok k Rk ok sk Kok [
/* Temporary relation template -- holds the projected */
/* attributes of the employees relation. */
[k sk kR R kR kR kR sk kR kR skokok Rk ok kol sk ks kok K skok ok ok

dbstruct temp3 {
dbchar name[32];
dbint age;
dbclass temp2RVA:collection[temp2];
temp2RVA temp2_rels;
public:
temp3 (char *, int);
char * get_name();
int get.age();
};

/***/

/* Constructor function code for temp3 */
[Fwk sk kokok sk Rk ok Rk sk Rk ok ok Rk kR okl okok ok ok ok ok /

temp3::temp3 (char * nameAtom, int ageAtom) {
dbchar * dest;
dest = name;
while (*dest++ = *nameAtomi+);

et

/*
/%
/*

ch

}

1

. /*
/%
/*
/*
/*
/%
/*

it

skokokokokokokokkok sk ok ok ok sk skokskololokokok ok ok sk ok ok ok sk ok ok ok kokokok skok sk sk ok /

Code for implementing member functions of temp3 #*/
Fokkolookokok ok ok kokakskak s dckolokok ok ok akokk kol ok ok ok sokokok ok ok kol ok /

ar * temp3::get_name() {
dbchar * source = name;

char * dest = new char[32];
char * start = dest;

while (¥dest++ = *source++);
return (start);

int temp3::get_age() {

return (age);

sk sk ok ok dokkdokak ko sk okl ok sk ok ook ook sk sk sk ok sk ok ek ok kskokaksk kool ok kol ok /
FILESCAN ITERATOR */

*/

This iterator will parform the filescan of the employees */
relation and will vielé a pointer to the resultant projected */
tuple. (i.e. a pvinter to a tuple of type temp3) x/

ok sk sk sk ok ok sk okok ok ok sk ook 2ok ok sk ek s ok ok sk kok Sk ok ok sk ok kok sk skok sk sk sk o sk sk koK sk ok ok Kok sk sk sk skok /

erator temp3 * filescan_temp3()

{

[xRk Aok KAk AR Rk K SRRk Kk kK ok
/* scan the employee relation */
[Esokk kool dok d kokokiokokkolokokiok s kokokokok ok /
iterate (emp * left_tuple_ptrl = employees.scan())

{

[FAokkkkkkkokk ok ok dordokk ok kok /

/* selection condition %/

[3Rk kokokok R kkokkokok ok k ok kok /

if (left.tuple_ptri->get_age() > 30)
{
JHsckkkiokkokkskokkokokkokkokskokokok sk ok ok kiR ok ootk ol kolokskaok ok ok ok f
/% copy the projected atomic attributes from employees */
/* into temp3 */
[xkkokieckok b kokskokokokolookokskokkokokokok sk kokok ok sk kok dotokok okl okl okokok ok /
temp3 * t3 = new temp3 (left_tuple_ptri->get_name(),

left_tuple_ptri->get_age());

[rkoktskokokolok koot koot kokoskiololook ok ok ok ok skskokook ook ek ok skokoksk ok /

/* set up a reference pointer to descend one level of x/

/* nesting in temp3 x/

[%k sskokkskokiokotok ok ok ok sekokkoktokatokkokotokolokok kokokok sk sk okl ok ko etk skokok /

temp3 & temp3.ref = * t3;

[Fckskoksk ok ok ok ok dokskokoloiotok kol ok sk skokskok dakok ok ok skok sk skokok dokkok sk sk k ok /

/* set up a reference pointer to descend one level of x/

/* nesting in employees x/

[¥Esokkkrok ok 4 ok dokodor ook sk kokok itk skokokokskosksksk sk sk skoksk ok ok ok ko skok ot /

emp & left_source.refl = % left_tuple_ptri;

[Hkskeookokoolokorokok ks oF ok dokokorokdokokkskskok ok /

/* scan the children relation */

[kskokseiorat dodok RokokoskdsokokaoR ok koksk ook ok /

iterate (child * left_tuple_ptr2 = left_source_refl.
children.scan())

{

/Fkakoksoksiokolookskokok sk Kok kokok ok ok /

/* selection condition */

[k askkokokkskokskokkok ok sk ok kkokoksok /

if (left_tuple_ptr2->get_age() < 5)
{
[Frkoksokakokokkokokokokkok kR dokokokoskok koo skskoklok sk sk ok ko sk oKk /
/* copy the projected atomic attributes from */
/* children into temp?2 x/
[k ok okokskokok ok dolokorok ok ok sok ok sokskokok K skokoskok K dokok & /
temp2 * t2 = in (temp3_ref.temp2_rels) new temp2

(left_tuple_ptr2->get_name(),
left_tuple_ptr2->get_age());

[k koo kokkok ok kokskakkokksk ok ok ok ok ok Rk Rk ok ok k ok /
/* set up a reference pointer to descend one */
/* level of nesting in temp2 */
[}k Rk ko ok kol kokok stk kskkok sokskokoskkokok sk okskskokok kokokok & /
temp2 & temp2_ref = % t2;
[k ok ko ook ok kokokskok ook doloksk ko Rolokaokok sk dok ok ook ok /
/¥ set up a reference pointer to descend one */
/* level of nesting in children */
ook ke ko ok sk ok ok ks ok sk ko sk ok ok ok ke ko ok sk okok sk sk ok ok ek skok ok ok ok
child & left_source_ref2 = * left_tuple_ptr2;

-5

[FKRRIA AR AR IR A AAAKKKAKAK KA KK [

/* scan the toys relation */

[k kR ok KRR KRR KAk HK [

iterate (toy * left_tuple_ptxr3 = left_source.ref2.
toys.scan())

{

[k kR Rk kKRR kKRR Rk ok ok [

/* copy the projected atomic attributes */

/* from toys into tempi */

[xRk KRRk Rk Rk KRRk Rk Rk ok ko kdokok [

templ * t1 = in (temp2_ref.tempi_rels) new templ
(left_tuple_ptr3->get_name());

}

}
}

/**/

/* yield the projected tuple, which is a pointer to a temp3 */
[Rrkskiokskcokkokskok ook koktokokokokkkiokskkok sk kol ok okl ook ok sokorRok Rk k ok /

yield (t3);

¥
}
1
[k ok kskokokkkokskatok sk Roksk ok skakokkak ok ok sk sk okok sk kaloksskok ks sk ook kol ok ok
/* MAIN PROGRAM */
/* The main program will call the filescan iterator and print out the */
/* contents of the projected and selected relation, */
[Rk dokoRk ok skok ok ok kR ok skl ok tokok ok ki sk ok skok K sk ok sk ok kkokkakokok skt sk ok ok kok ok /
main()
{
iterate (temp3 * left_tuple_ptri = filescan_temp3())
{

cout << form ("employees_name: %s\n",
left_tuple_ptrl -> get_name());
cout << form ("employees_age: %d\n",
left_tuple_ptrl -> get_age());
temp3 & left_source_refl = % left_tuple_ptri;
iterate (temp2 * left_tuple_ptr2 = left_source_refl.
temp2_rels.scan())
{
cout << form ("children_name: %s\n",
left_tuple_ptr2 -> get_name());
cout << form (“children_age: %d\n",
' left_tuple_ptr2 -> get_age());
temp2 & left_source_ref2 = % left_tuple.ptr2;
iterate (templ * left_tuple_ptr3 = left_source_ref2.

templ_rels.scan())
{
cout << form ("toys_name: %s\n",
left_tuple_ptr3 -> get_name());
}

;

Appendix F. Loops.Join Method

The following code implenients the loops_join query depicted in Figure 3.7 and de-
scribed in Section 3.3.2. In the Triton system, the code in this appendix would be written
to a file called query.e by the E code generator codegen to implement the query. The
comments that appear in the code in this appendix are not generated by codegen but have

been put in by the author to explain the operation of the loops_join.

#include <stream.h>
#include <stdio.h>

#ifndef EMPLOYEES_H
#include "employees.h"
#endif

extern persistent empRVA employees;

[3Rk ko ki skokkskoksk ok kool dokolololaiok ok skoksolokkolokkkokdokokodok delok ok f
/¥ Temp.rary relation template -- holds the projected */

/* attributes of the toys relation. x/
[HRkkk ok ko k koo Rk okl ok R RRkk ok kR kR ko [

dbstruct templ {
dbchar name[32];
public:
templ (char %);
char * get_name();

};

[k KKk sk koK sk ok koK Ko ok s kok ok Rk sk ok ok sk ik ok sk ok ook

/* Constructor function code for templ */
[Rkkkskkskoksk ok ok ok kokdokok ok dokokoksiokokkokokokkkokok /

templ::templ (char * nameAtom) {
dbchar * dest;

dest = name;
while (*dest++ = *nameAtom++);

b

F-1

T el e bR A0,

oM R

L)

el e TR L S

L STRrE

A5 P A " DAY e g

AL

Hahnd

BTGV Aty

230

A

l‘t;m L e L AN Rt f L

/**/

/* Code for implementing member function of templ */
[Rrkkokkorok ok Rk kR kR Rk R R KRR R KRR ROR KKK

char * tempi::get_name() {
dbchar * source = name;
char * dest = new char([32];
char * start = dest;
while (xdest++ = *sourcett);
return (start);

3

[k ok kR ok kKRR KRRk kR Rk kR Rk Kok
/* Temporary relation template -- holds the projected */

/* attributes of the employees relation. */
JRrxkkRRRRR Aok ok ok ok Rk kR Rk kR sk kR ook sk ok sokokokokok /

dbstruct temp2 {
dbchar name([32];
dbclass tempiRVA:collection[tempi];
templRVA templ_rels;
public:
temp2 (char *);
char * get_name();

};

/***ﬂ********************************J****/

/* Constructor function code for temp2 */
[rskackkskskakokkokdokskokskkok kskokaolkolorok ok kol sokokkokok /

temp2::temp2 (char * nameAtom) {
dbchar * dest;
dest = name;
while (*dest++ = *namelAtom++);

3

/**/

/* Code for implementing member function of temp2 */
[Rkl ookl koolokokojok kR koo ok sokokokkokskok ko /

char * temp2::get_name() {
dbchar * source = name;
char * dest = new char[32];
char * start = dest;
vhile (*dest++ = ¥source++);
return (start);

¥

[k Rk Rk ook Kok ok Rk Rk kR kKRRl sk ko sktok kskololatskakook ook Rk ok [
/% FILESCAN ITERATOR x/
/% x/
/* This iterator will verform the filescan of the employees */
/* relation and will yield a pointer to the resultant projected */
/* tuple. (i.e. a pointer to a tuple of type temp2) x/

/**/

iterator temp2 * filescan_temp2()

{

[kt kkokok ok sk Kok ok ok ok ok skok sk ok ok ok sk sk ok ok ok ok /

/* scan the employee relation */

[k R AR IR KRR KRR AR KKK Kk

iterate (emp * left_tuple_ptrl = employees.scan())
{
[Rkskskckk kR KRk Rk ok kR sk ok ssk ok okok ok ok skkRkok kR ok Kk ok ok /
/* copy the projected atomic attribute from employees */
/* into temp2 */
JRxssksokkkkRkkk kRl kR oKk ok kR Aok ook kR ook sk kskok [
temp2 * t2 = new temp2 (left_tuple_ptri->get_name());
ARk R kR Rk ok sk ok sk ok skok sk ksk ok skokk sk ok okok KRk sk stk ok [
/* set up a reference pointer to descend one level of x/
/* nesting in temp?2 */
[KRRk KRR KRRk Rk Kk skok R kR koK ok K okok ok ok k ok ok ok ok /
temp2 & temp2_ref = * 1t2;
[FxsskkRRk kR Ak R Rk R Aok Rk okkokok ok kR ok okokk ki siok Rk ok
/* set up a reference pointer to descend one level of %/
/* nesting in employees */
[k ok kR kR kKRR kKRR ok kR kR skokok sk kkkkok [
en, & left_source.refl = * left_tuple_ptri;

[0k skskorek ok kol ok o g ki sk ok skorork kKoK dokokk /
/% scan the children relation */
[k kokakokok ok kR sk ok sk okl ok okokokokokokok sk ok Kok /

iterate (child * left_tuple_ptr2 = left_source.refi.children.scan())
{
xRk sk ok RookkkoRkk ok Rk ok kok kR ok kKRR ok okok [
/* set up a reference pointer to descend one level of */
/* nesting in children */
[k xRRAR R ARk kR Rk okl kKRR ok ok kR ok Rk ok /
child & left_source._ref2 = * left_tuple._ptr2;
JFkkrrkskkdsksksk sk kR kookokok /
/* scan the toys relation */
[3kkkrRE A AR KRR RA ARk [
iterate (toy * left_tuple_ptr3 = left_source_ref2.toys.scan())

{
[k koo Rk kR kiR kR okl ok ook ook koo & /
/* copy the projected atomic attribute from toys */
/* into templ */
[k kR ok koo Rk kR okokkok sk skokokokofokkokokok &
templ * t1 = in (temp2_ref.templ_rels) new tempi
(left_tuple_ptr3-" me());
}
}
[REkxkkskkdkok Rk kRl ks okkokkookk Rk skorokk ok kool ookok ok ok Rokokok /
/* yield the projected tuple, which is a pointer to a temp2 x*/
Jxsskoksok kiR skok kR koo okkok Kok ok ko kkkokskok ok skl ook kakok ok bkl kRl K okokok /
yield (t2);
3
3

#ifndef PRODUCTS_H
#include "products.h"

#endif

extern persistent productRVA products;

[3Rk Rk kok kR Rk ok kR oRRk ok KRR KKKk skokokk
/* Temporary relation template -- holds the projected x/
/* attributes of the products relation. */
[kAR Rk KRRk kR RokoloRoRok Rk ok Rk ok kR kR ok oklokok /

dbstruct temp3 {
dbchar name([32];
dbclass manufacturerRVA:collection[manufacturer];
manufacturerRVA manufacturers;
public:
temp3 (char *);
char * get_name();

};

/***/

/% Constructor function code for temp3 */
[Hkskokkokskdokaokookk ok dokskookskokskkkkdokkokokokokokkokskokok /

temp3: :temp3 (char * nameAtom) {
dbchar * dest;
dest = name;
vhile (xdest++ = *nameAtom++);

3

/**/

/* Code for implementing member function of temp3 */
[Rk kR sk ok dok sk ok Rk Rk koo kR ok ko Rk sk ko k

char * temp3::get_name() {
dbchar * source = name;
char * dest = new char[32];
char * start = dest;
while (kdest++ = *sourcet+);
return (start);

/**/

/x
/%
/*
/*
/%

FILESCAN ITERATOR */

*/

This iterator will perform the filescan of the products x/
relation and will yield a pointer to the resultant projected */
tuple. (i.e. a pointer to a tuple of type temp3) x/

/**$*************************/

iterator temp3 * filescan_temp3()

{

[Rk koK Lk kokok Rk koK sk ok Kok /

/* scan the products relation */

[k Kok ook sk kokok ok ok ok sk ok sk ok ok kokok sk skok ok ok /

iterate (product * left_tuple_ptrl = products.scan())

{

[k kR sk kR sokok kKRR kR sk ok KRk ok kR kol ok Rk okok [

/* copy the projected atomic attributes from products */

/* into temp3 */

Jorsokksoriorsor iRk kokkokkoRR Rk KRk skl koRok Rk sk ok Rk ok

temp3 * t3 = new temp3 (left_tuple_ptri->get_name());

[skskokskkkokkokoRkRok oKk ok kRl kol ok kR kR kR

/* set up a reference pointer to descend one level of */

/* nesting in temp3 */

[xxdkkskkkk ok koK Rk Rk KRkl okkk kR Rkl Rk ok /

temp3 & temp3_ref = * t3; .

[k kR kR Kk kok Rkl Kook Kok kR ok kR kR Rk Kok ok ok [

/* set up a reference pointer to descend one level of */

/* nesting in products x/

[xEksk ook kR kR Rk ok kR Rk Rk Sk SRk ok KRk skk ok kR o /

product & left_source_refl = % left_tuple_ptril;

[k kskokk sk kKR kR ok sk kR ok Rk Rk ok koK

/* scan the manufacturers relation */

[kKoK ok skok ok sk sksk sk ok sk ok k sk kol kol skokskok ko skok ok ok /

iterates (manufacturer * left_tuple_ptr2 = left_source_refl.
manufacturers.scan())

{

[k ook ik kok ko ok ko skkokRok ok kokkk ok ok okt okltokkok Rk sk ok kokok /

/* copy the projected atomic attributes from manufacturers */

/* into the manufacturer relation-valued attribute of temp3 */

[Rk kR Rk kR ks Rk Rk sk sk kot ok k ok skkkokoksk ok ok ok tokoktokokak ok kb ok ook k /

manufacturer * manufacturer_ptr = in (temp3_ref.manufacturers)
nev manufacturer (left_tuple_ptr2->get_location(),
left_tuple_ptr2->get_name(),
left_tuple_ptr2->get_phone());

[FFARFAAAAAAAARAIAAAAAKAARAAAKAKAAAKAAAA KK AR AR AR ARk ok Rk KRR Rk [
/* yield the projected tuple, which is a pointer to a temp3 */
[k ok ok KRRk ROk R ok ok ok ok kR Rk kR kR koK [
yield (t3);
}

}

JskoksokoRskkRoR ook ok ok kR sk ko sk kol ok ok sk okok ok ksk Kk kkok ok
/* Temporary relation template ~-- holds the attributes */
/* of the join for the manufacturers relation-valued */
/* attribute of the join x/
[k skl ok Rk sk ok ks Rk sk Rk sk Rk ks okl Rk kR skok ok skokk ok [

dbstruct temp4 {
dbchar location[32];
dbchar name[32];
dbint phone;
public:
temp4 (char *, char *, int);
char * get_location();
char * get_name();
int get_phone();
};

/***/ .

/* Constructor function code for temp4 */
[RxkdokskkoksokskkkkRskdok KRRk kR Rk dkodok kR Rk ok

temp4: :temp4 (char * locationAtom, char * nameAtom, int phoneAtom) {
dbchar * dest;
dest = location;
while (*dest++ = *locationAtom++);
dest = name;
while (*dest++ = *nameAtom++);
phone = phoneAtom;

[K3k3kskok s s s sk sk skk sk ko sk o sk s ke skl sk ok ke sk kol sk ok ok sk ksl ok s kol skok sk ok ok ke /

/* Code for implementing member functions of temp4 */
[AR AR KRR ARSI RR RS R KRR Aok kK Ak [

char * temp4::get_location() {
dbchar * source = location;
char % dest = new char[32];
char * start = dest;
while (kdest++ = *gource++);
return (start);

¥

char * temp4::get_name() {
dbchar * source = name;
char * dest = new char[32];
char * start = dest;
while (kdest++ = *source++);
return (start);

¥

int temp4::get_phone() {
return (phone) ;

¥

[Hswskkkokkokorookdokokskkoksk kRl stk sk ko oksk ok kol oksokskokok ok ok ik sokok ok sk f
/* Temporary relation template ~-- holds the attributes */
/* of the join at the join_level */
[Hkkiokskkksokkkokk Rk okkokcokookokskkkskkk R kksktoksolok kol Rk okokok Rk ok ok /

dbstruct temp5 {
dbchar toys_nama[32];
dbchar products_name[32];
dbclass temp4RVA:collection[temp4];
temp4RVA temp4_rels;
public:
temp5 (char *, char *);
char * get_toys_name();
char * get_products_name();

};

/***/

/* Constructor function code for temp5 */
sk Rk Rk sk ksl sk sdk Rk sk sk sk sk skskok solok kkokok

temp5::tempS (char * toys_nameAtom, char * products_nameAtom) {
dbchar * dest;
dest = toys_name;
vhile (*dest++ = *toys_nameAtom++);
dest = products_name;
while (*dest++ = *products_nameAtom++);

}

330k sk ksl o ok sk sk sk ok sk ok ok ok sk kol sk ki ok ok ok e sk ok sk s kokok sk sk sk ok skl sk ok sk ok

/* Code for implementing member functions of tempS */
[Hsoikkokok b tokk ok okokokook ok doiorokoolookakoiok sk okaiokok ok okskoktof sk ok ok /

char ~ temp5::get_toys_name() {
dbchar * s~mice = toys_name;
char * dest = new char[32];
char % start = dest;
vhile (*dest++ = *source++);
return (start);

3

char * temp5::get_products_name() {
dbchar * source = products_name;
char * dest = new char[32];
char * start = dest;
while (*dest++ = *source++);
return (start);

3

[Fkskrsskoolorokkokk okl kkkokkskskRokskolokoliok okl ko sk skl ok ook dokok ok /
/* Temporary relation template -- holds the attributes */
/* of the join for the employees attribute of the join */
[¥Rkl kRl okkok kR ok skRokkok sk Rk Rk sk kR sk ok ok sk kool /

dbstruct temp6 {
dbchar name[32];
dbclass tempSRVA:collection[temp5];
tempSRVA temp5S_rels;
public:
temp6 (char *);
char * get_name();

+;

/***/

/* Constructor function code for temp6 */
[Rk R Rk ARk KRRk kK k

temp6: :temp6 (char * nameAtom) {

}

dbchar * dest;
dest = name;
while (*dest++ = *nameAtom++);

/**/

/%

Code for implementing member function of temp6 */

/**/

char * temp6::get_name() {

}

dbchar * source = name;

char * dest = new char[32]:
char * start = dest;

while (*dest++ = *source++);
return (start);

/**/

/*
/x
/*
/*
/%

LOOPS_JOIN ITERATOR

This iverator will perform the join of the products relation
to the employees relation and will yield a pointer to the
resultart tuple. (i.e. a pointer to a tuple of type temp6)

*/
*/
*/
*/
*/

/**/

iterator temp6 * loops_join_temp6()

{ ¢
[FsR Rk kKRR sk Rk kKRR kR kK KRRk ok sokokokok ok f
/* scan the temp2 relation using files~zan iterator */
[Fskskkkkkk koo ko kdksok ok ookkokkokokkkk ok ok
iterate (temp2 * left_tuple_ptrl = filescan_temp2())

{

/***/

/* copy the atomic attributes from left relation into
/* temp6

...

*/
*/

..............

/%#***¥¥¥¥*#****M*¥***************************************/

temp6 * t6 = new temp6 (left_tuple_ptri->get_name());

F-10

[xRk kKRR okoRRkRk Rk Aok KRRk Rk ok ok kKRR kR koRkokok /

/* set up a reference pointer to descend one level of %/

/* nesting in temp6 */

xR ddoksk kR KRRk kR kokok kR Kk Rk kR ok kR kR ok ook /

temp6 & temp6_ref = * t6;

[FFFIAAAAA A AR IKAKAAAKAAA AR KKK AAAA KA A AAKAK [

/* set up a reference pointer to descend one level of */

/* nesting in the left relation */

[k kR kKRR KRR ROk KRR oK ookt kokdokkok /

temp2 & left_source_refl = * left_tuple_ptri;

Jskdokokok KRRk Kk Rk ok Kk skokok [

/* scan the templ relation */

/R kR Rk R ARk KR KK /

iterate (templ * left_tuple_ptr2 = left_source_refl.
tempi_rels.scan())

{
[FxxxkdRsk kKRR Rk okkolok sk kR Rkl kR kR Rk ok ok /
/* scan the temp3 relation using filescan iterator */
[xRsskiorkssokRRRokkokk Rkl ook kKRRl ROk okl okl ok /
iterate (temp3 * right_tuple_ptrl = filescan_temp3())
{
[xxRKRdA A CRKKKKKKK [
/* join cordition */
[Rk, sokokokokkkokok /
if (strcmp (left_tuple_ptr2->get_name(), right_tuple_ptri->
get_name()) == 0)
{
[FxxrkERAF AR Aok okk ko kkkkkokkdokkok /
/* copy the atomic attributes from left and right #*/
/* relations into tempS */
[Fxrrpk Rk sokokk kR Rk kk ookl ok kkokkkokok ok ki k
temp5 * t5 = in (temp6_ref.temp5_rels) new tempd
(left_tuple_ptr2->get_name(),
right_tuple_ptri->get_name());
[Fkrkokiokstkolokokskoksk Kokl kR skok Rk sk ook ok ko okok sk ook /
/* set up a reference pointer to descend one */
/* level of nesting in temp5 */
kKRR ok kR Rk kR ok kR Rk ok kkookok f
tempS & tempS_ref = % t5;
[xRk kR kR kKRR Rk kKRR Rk kKRR sokokk ok okl ok ok ok /
/* set up a reference pointer to descend one ¥/
/* 1level of nesting in right relation */
[xRk Rk ok kKRR Rk KRk ok kR ok kskokkokok k ok
temp3 & right_source.refl = * right ,tuple_ptri;

F-11

[k kR sk ok ko okklokok ookl kok /

/* scan temp3’s manufacturers relation */

[k ok kokkok Rk Rk Rk Rk ok ok ok Rk sk ok kbR ok f

iterate (manufacturer * right_tuple_ptr2 =
right_source_refl.manufacturers.s:an(’)

{

[k Rk kKRR Rk kol okok ok /

/* copy the atomic attributes from right */

/* relation into temp4 x/

[FEkrkkskkkk Rk ok kR kokklok ook kR ok kokk [

temp4 * t4 = in (tempS_ref.temp4_rels) new temp4
(right_tuple_ptr2->gut_locatiun(),
right_tuple_ptr2->get_name(),
right_tupie_ptr2->get_phune());

}
3

[k kR kokok kR KRRk kR Rk doRIokok ok kR ROk kKR kK ok [
/* yield the joined tuple, which is a nointer tc a temp6 */
[FEkikRk kKRR kKRR ok kKR kR okokkkkkrookkokokolok o okkoRok e kokok [/

yield (t6);
¥
}
[xRkl ok Rk ok kRl ok sk ko Rk kR kR ok kol ook /
/* MAIN PROGRAM */
/% */
/* The main program will call the join iterator and print out the */
/* contents of the joined relation. x/
[FkRRmkkdorkkckkk koo kiR ok kol okl otk ool kol ok otokk ook okok /
main()
{ A
iterate (temp6 * left_tuple_ptrl = loops_join_temp6())
{

cout << form (“"employees_name: %s\n",
left_tuple_ptrl -> get_name());
temp6 & left_source_refl = * left_tuple_ptri;
iterate (temp5 * left_tuple_ptr2 = left_source_refl.
temp5_rels.scan())
{
cout << form ("toys_toys_name: %s\n", left_tuple_ptr2 ->
get_toys_name());
cout << form ("products_products_name: %s\n", left_tuple_ptr2 ->
get_products_name());

F-12

tempS & left_source_ref2 = % left_tuple._ptr2;
iterate (temp4 * left_tuple_ptr3 = left_source_ref2.
temp4_rels.scan())
{ .

cout << form ("manufacturers_location: }s\n",
left_tuple_ptr3 -> get.location());

cout << form ("manufacturers_name: %s\n",
left_tuple_ptr3 -> get_name());

cout << form ("manufacturers_phone: %d\n",
loft_tuple_ptr3 -> get_phone());

}

I-13

Appendix G. Store.Values Method

The following code implements the store.values query depicted in Figure 3.8 and
described in Section 3.3.3. In the Triton system, the code would be written to a file called
query.e by the E code generator codegen to implement the query. The comments that
appear in the code in this appendix are not generated by codegen but have been put in by

the author to explain the operation of the store_values method.

#include <stream.h>
#include <stdio.h>

#ifndef EMPLOYEES_H
#include "employees.h"
#endif

extern persistent empRVA employees;

main()
{
[HREKKKKKKKKKAKRAAAAAAAAKKAAAKK KKK [
/* scan the employee relation */
JRERAKKRKR R AR AR AR FAAKAAAAAARRKKKK [

iterate (emp * left_tuple_ptri = employees.scan())
{

[Rk ok ok kokk sk kokok ok kok /

/* condition statement */

/R sksiokkokokkskkskoksk sk ko ok ok kokk /

if (strcmp (left_tuple_ptri->get_name(),"David") == 0)
{
J KRRk R kKRR KRR ok Rk K K ok kR ok sk ok ok skok Kok ok f
/* set up a reference pointer to descend oie level of %/
/* nesting in employees */
[Fkskkskkk ok ok kR kKRR R KRRk Kok Kk Rk sk sk sk Kok ok ok sk sk ok ok ok sk /
emp & left_source_refl = * left_tuple_ptri;
[sk skokkokkokokkok ok ki okk ook Rk KRk Rk [
/* scan the children relation */
JAsckdokkokkkksk ko ko dokokok ok kok Kok Rk skok ok ok f
iterate (child * left_tuple_ptr2 = left_source_refl.

children.scan())

{

[k sk kokok sk ok ok sk ok ok sk ok ok koK ok ok ok
/* condition statement */
JESIE P T TR PER R PR TRy
if (strcmp (left_tuple_ptr2->get_name(),"Florence") == 0)
{
[sskksok kR sk ok Rk KRRk kok ok kok kR kR kR kR kol Rk KRk
/* set up a reference pointer to descend one level of */
/* nesting in children */
[k ksRkk kKRR kR oK KKK R KR KRR Rk KRRk Rk ok sk ok [
child & left_source_ref2 = * left_tuple_ptr2;
[FFRIAF AR FAAAKAAAAKKAKKKAAAAAAAAAAIA AR KAK [
/* insert two new "toy" tuples into toys */
[FFAR IR KRR AR AR AR KA KKK KR kKKK Kok KoK [
toy * toy_ref = in (left_source_ref2.tcys)
new toy ("car", '"black");
toy * toy_ref = in (left_source_ref2.toys)
new toy ("truck", "blue");
}
}
[RKRE Ak AR R R AR AR KRR AR KRRk kK Ak Aok ok kKK ok /
/* insert a new "project' tuple into projects */
[k kR KRR KRR K KA KRR AR AR KR KR KKK KAk
project * project_ref = in (left_source_refl.projects)
new project ("AWANA", 384);
}

Appendix H. Modify Method

The following code implements the modify query depicted in Figure 3.9 and described
in Section 3.3.4. In the Triton system, the code would be written to a file called guery.e by
the E code generator codegen to implement the query. The comments that appear in the
code in this appendix are not generated by codegen but have been put in by the zuthor to

explain the operation of the modify method.

#include <stream.h>
#include <stdio.h>

#ifndef EMPLOYEES_H
#include "employees.h"
#endif

extern persistent empRVA employees;

main()
{
[Fxsackokaskkakokokok ok skokokkokok ok koskkkokkkok f
/* scan the employee relation */
£k sskorR ok koK kK ok Rk skok kol Rokok ok kskok /
iterate (emp * left_tuple_ptrl = employees.scan())
{
ook sokskok sk sk ok ok ok ok sk sk ok sk kkok sk ok /
/* condition statement */
[Hkkskskokokkkkkkokk ok ok ok ok dokok
if (strcmp (left_tuple_ptri->get_name(),"David") == 0)
{
[k kR ok ok sk odk sk k ok ok kR ks kskskok ok kiR doklok ok ook ok kokok o f
/* set up a reference pointer to descend one level of */
/* nesting in employees */
[Ak koksk sk ko Kok sk ok kR ok o sk ok ok ok sk ok ks kol skoksk ok ok ok sokokkok kolokok /
emp & left_source_refl = * left_tuple_ptri;
[koK sokok ok sk ok ok sk skok sk sk ks kokok ok skok sk ok /
/* scan the children relation #*/
[%ok ok kok koo sk ok kok ko sk ok dokskok ok ok
iterate (child * left_tuple_ptr2 = léft_source_refl.
children.scan())

{

H-1

[Fddekokroleskokoiorkokok ok kR Robokkokk ok f
/* condition statement */
[3kkskokok ook kok ok ok 4 ok skok ok sk sk kokok ok /
if (strcmp (left_tuple_ptr2->get_name(),"Flo") == 0)
{
[k kR sk Rk kR okkk ok sokkokksk sk kol Rk kR kK okok ok /
/* invoke member function to change child’s age */
JRksokkokkkokok kokskok ok ok ok okokok ok ok kR ok koK ki sk kskok
left_tuple_ptr2->change_age (4);
[k kokskakoksokRokk R Rk kRl Rk ok Kok kbR dokok Kk ok ok [
/* set up a reference pointer to descend one */
/* level of nesting in children */
Jsokikkookdokskoksok s Rskok Kok ik ok ik sk kR kR kK skok ok ok ok o /
child & left_source_ref2 = % left_tuple_ptr2;
[xRk sk Rk kR kR ok KRRk kokok kK k
/* scan the toys relation */
[k ko ok koK skok ok sk ke koK kR koK Kok sk kok f
iterate (toy * left_tuple_ptr3 = left_source_ref2.
toys.scan())
{
[k sk ok Rk kR kR ko kR koK sdokok Sokskok
/* invoke member function to <hange */
/* the color of the toys */
[REk Rk R Rk Rk kR Rk kR rok Rk dokkok [
left_tuple_ptr3->change_color ("blue");
¥
3
}

[tk kkdok ok Rokok kR kR Rk kK [

/* scan the projects relation */

[xRk kR ok Rk KRRk ko ok [

iterate (project * left_tuple_ptr4 = left_source_refl.
projects.scan())

{

[kR skok sk skokok ok ok sk ok sk sk e sk kokok ok f
/* condition statement x/
JKAdok Kok sk ki sk okok ok ok kokok sk sk ok ok ok /

H-2

if (strcmp (left_tuple_ptr4->get_name(),"BNAD") == 0)

{

[Fxkoksksorokokok kR ok KRRk KRR RR R KRR K KK [

/* invoke member function to change */

/* the name of the project */

[sk kskokok ook okokksokok ok kR kR ok okl kokok /
left_tuple_ptr4->change_name ("TROY");

}

Appendix 1. Delete Method

The following code implements the delete query depicted in Figure 3.10 and described
in Section 3.3.5. In the Triton system, this code is written to a tile called query.e by the B
code generator codegen to implement the query. The comments that appear in the code in
this appendix are not generated by codegen but have been put in by the author to explain

the operation of the delete method.

#include <stream.h>
#include <stdio.h>

#ifndef EMPLOYEES_H
#include "employees.h"
#endif

extern persistent empRVA employees;

main()

{

[okkiolokdokdokokoskokok ok rokokok koot dokokokk /
/* scan the employee relation */
[Hkrkskskokkokokok ok skokkokdokkokokdokdokokkokok [/

iterate (emp * left_tuple_ptrl = employees.scan())
{

[Hssoksokrsookokskk ok kolokkokkokokkok /

/* condition statement %/

[ekokdorsekookokokkskokskokok sk skokok sk ok /

if (stremp (left_tuple_ptri->get_name(),"David") == 0)
{
[HskckokskokokskRokkskkoskkookok ok ok kb ok ok okl okakokdoiokokskookokskolok ok ok ok f
/* set up a reference pointer to descend one level of */
/* nesting in employees */
[FFckscksk Rk ok ok kR sk ok kokkok sk sk okkok ks ko kRl ok sk kokskkskkok ook ok dekok ok /
emp & left_source_refl = % left_tuple_ptri;
[ks sokk sk Kok sk k Kok ok skl ok Rk ksk Kok ok
/% scan the children relation */
[k kksok Kk kokok ok sokok Rk ok Rk Kk k /
iterate (child * left_tuple.pwr2 = left_source_refl.

children.scan())

{

[ki sokstokokosk kK sorskskkokkokkok
/* condition statement */
J ¥k kkokkokokokskok sokok s okokokoskkok ok /
if (strcmp (left_tuple_ptr2->get_name(),"Flo") == 0)
{
[kK sk stk sk sk ok ok ok ok Rk Ak koK KR SRk SR sk sk ok sk sk skkok ok ok skok ok
/* set up a reference pointer to descend one level of */
/* nesting in children x/
[ks ki kskokok sk ko ik ok ko sk sk kskskolok ko ok sk sk sk kskok ok sk Rokok o
child & left_source_ref2 = * left_tuple_ptrl;
[sk kskorokokok ok kR kR ok skok sk ok ok /
/* scan the toys relation */
J3kkkkckokskok kkok sk Kk kR KRk Ak f
iterate (toy * left_tuple_ptr3 = left_source_ref2.toys.scan())
{
[k sk ok kR kok kol kskok ok kokokokok /
/* delete the toy tuple */
[k ook koo koo Rk okokkok
delete left_tuple_ptr3;
}
}
3

[RkskokkRdck kR Rk kR Kok kKR ok ok [
/* scan the projects relation */
[k ki ko ok koiok sk sk sk sk kR kK siokdkosk ok kok /
iterate (project * left_tuple_ptr4 = left_source_refl.projects.scan())

{

[k sk skokodok sk ok ok kokskok sk Kok ok ok sk ok skokok ok /

/* delete the project tuple */
[skokokokz. sk ksk ok ok sk ok sk kok koK sk ok ok sk kok sk

delete left_tuple_ptr4;
}

Appendix J. SQL/NF Create Table Definition for the Relational Version of the
IDEF, Language Data

The SQL/NF statements to create the schema for the relational version of the IDEFg

language data are as follows:

CREATE TABLE act2act_table (
parent_node INT 4,
child_node INT 4)

CREATE TABLE act2data_table (
node_id INT 4,
data_id INT 4,
icom_type CHAR 2)

CREATE TABLE act2hist_table (
node_id INT 4,
hist_id INT 4)

CREATE TABLE act2ref_table (
node_id INT 4,
ref_id INT 4)

CREATE TABLE activity_table (
node_id INT 4,
node CHAR 21,
name CHAR 26,
project_id INT 4,
author_id INT 2,
version CHAR 11,
date CHAR 9,

x INT 2,

y INT 2,
visible_DRE INT i,
sheet_id INT 4)

CREATE TABLE act_changes_table (
node_id INT 4,
changes CHAR 61)

CREATE TABLE act_descr_table (
node_id INT 4,
line_no INT 2,
desc_line CHAR 61)

CREATE TABLE alias_table (
data_id INT 4,
name CHAR 26,
where_used CHAR 26,
comment CHAR 26)

J-1

CREATE TABLE analyst_table (
authox_id INT 2,
author CHAR 21)

CREATE TABLE arrow_table (
symbol_id INT 4,
arrow_type INT 1)

CREATE TABLE boundary_table (
symbol_id INT 4,
icom_code CHAR 3)

CREATE TABLE data2data_table (
parent_data INT 4,
child.data INT 4)

CREATE TABLE data2label_table (
data_id INT 4,
label_id INT 4)

CREATE TABLE data2ref_table (
data_id INT 4,
ref_id INT 4)

CREATE TABLE data2value_table (
data_id INT 4,
value_id INT 4)

CREATE TABLE datu_changes_table (
data_id INT 4,
changes CHAR 61)

CREATE TABLE data_descxr_table (
data_id INT 4,
line_no INT 2,
desc_line CHAR 61)

CREATE TABLE data_elem_table (
data_id INT 4,
name CHAR 26,
project_id INT 4,
author_id INT 2,
version CHAR 11,
date CHAR 9)

CREATE TABLE data_range_table (
data_id INT 4,
range_data CHAR 61)

CREATE TABLE data_type_table (
data_id INT 4,
type CHAR 26)

CREATE TABLE data_value_tablel (
value_id INT 4,

value CHAR 16)

CREATE TABLE dot_table (
symbol_id INT 4,
dot_type INT 1)

CREATE TABLE footnote_table (
graf_id INT 4,
x INT 2,
y INT 2)

CREATE TABLE feo_table (
graf_id INT 4,
picture CHAR 61)

CREATE TABLE graphics_table (
graf_id INT 4,
sheet_id INT 4)

CREATE TABLE hist_call_table (
hist_id INT 4,
hist_proj CHAR 21,
hist_node CHAR 13)

CREATE TABLE label_table (
label_id INT 4,
name CHAR 11,
x INT 2,
y INT 2,
sheet_id INT 4)

CREATE TABLE min_max_table (
data_id INT 4,
minimum CHAR 16,
max.imum CHAR 16)

CREATE TABLE note_table (
graf_id INT 4,
label INT 2,
x INT 2,
y INT 2)

CREATE TABLE note_text_table (
graf_id INT 4,
line_no INT 2,
text_line CHAR 61)

CREATE TABLE project_table (
project_id INT 4,
name CHAR 13)

CREATE TABLE reference_table (
ref_id INT 4,
line_no INT 2,
ref_line CHAR 61)

CREATE TABLE ref_type_table (
ref_id INT 4,
type_ref CHAR 26)

CREATE TABLE segment_table (
seg_id INT 4,
data_id INT 4,
sheet_id INT 4,
xs INT 2,
ys INT 2,
xe INT 2,
ye INT 2)

CREATE TABLE sheet_table (
sheet_id INT 4,
c.number INT 4)

CREATE TABLE squiggle_table (
graf_id INT i,
x1 INT 2,
y1 INT 2,
x2 INT 2,
y2 INT 2,
x3 INT 2,
y3 INT 2,
x4 INT 2,
y4 INT 2)

CREATE TABLE tunnel_table (
symbol_id INT 4,
seg.id INT 4,
sheet_id INT 4,
x INT 2,
y INT 2)

CREATE TABLE to_from_all_table (
symbol_id INT 4,
tfa_label CHAR 2)

CREATE TABLE symbol_table (
symbol_id INT 4,
tunnel_type INT 1)

CREATE TABLE turn_table (
symbol.id INT 4,
turn_type INT 1,
node_id INT 4,
hist_id INT 4)

Appendix K. SQL/NF Create Table Definition for the Nested Version of the
IDEF, Language Data

The SQL/NT statement to create the schema for the nested version of the IDEFg

language data is as follows:

CREATE TABLE projects (
project_name CHAR 13,
TABLE activities (
node_id INT 4,
node CHAR 21,
name CHAR 26,
author CHAR 21,
version CHAR 11,
date CHAR 9,
changes CHAR 61,
c_number INT 4,
parent CHAR 26,
TABLE act_descr (
line_no INT 2,
desc_line CHAR 61),
TABLE references (
ref_type CHAR 26,
TABLE ref_lines (
line_no INT 2,
line_xef CHAR 61)),
TABLE hist_calls (
hist_proj CHAR 13,
hist_node CHAR 21),
TABLE data_elems (
data_name CHAR 26,
icom_type CHAR 2),
TABLE children (
node_name CHAR 26),
TABLE data_elements (
data_id INT 4,
name CHAR 26,
author CHAR 21,
version CHAR 11,
date CHAR 9,
changes CHAR 61,
parent CHAR 26,
TABLE data_descr (
iine_no INT 2,
desc_line CHAR 61),
TABLE xeferences (
ref_type CHAR 26,
TABLE ref_lines (
line_no INT 2,
line_ref CHAR 61)),

K-1

TABLE

TABLE aliases (
name CHAR 26,
where_used CHAR 26,
comment CHAR 26),
TABLE min_maxes (
data_type CHAR 26,
minimum CHAR 16,
maximum CHAR 16),
TABLE ranges (
data_type CHAR 26,
range_val CHAR 61),
TABLE values (
data_type CHAR 26,
actual_value CHAR 16),
TABLE activities (
node_name CHAR 26,
icom_type CHAR 2),
TABLE children (
data_name CHAR 26)),
sheets (
c_number INT 4,
node CHAR 21,
name CHAR 26,
authoxr CHAR 21,
version CHAR 11,
date CHAR 9,
TABLE boxes (
node CHAR 21,
name CHAR 26,
x INT 2
y INT 2,
visible_dre INT 2),
TABLE segments (
data_id INT 4,
TABLE location (
xs INT 2,
ys INT 2,
xe INT 2,
ye INT 2),
TABLE symbols (
x INT 2,
y INT 2,
symbol_type CHAR 26,
type_symbol CHAR 26)),
TABLE squiggles (
x1 INT 2,
vl INT 2,
x2 INT 2,
y2 INT 2,
%3 INT 2,
y3 INT 2,
x4 INT 2,
v4 INT 2),
TABLE meta_notes (
label CHAR 2.
x INT 2,

K-2

y INT 2,
TABLE note_texts (
line_no INT 2,
text_line CHAR 61)),
TABLE foot_notes ¢
label INT 2,
xm INT 2,
ym INT 2,
xn INT 2,
yn INT 2,
TABLE note_texts (
line_no INT 2,
text_line CHAR 61)),
TABLE feos (
label CHAR 2,
x INT 2,
y INT 2,
picture CHAR 61),
TABLE labels (
data_id INT 4,
name CHAR 11,
x INT 2,
y INT 2)))

10.

11.

12.

3.

14.

Bibliography

. Armstrong, James R. Chip-Level Mcdeling with VHDL. Englewood Cliffs, NJ:

Prentice-Hall, 1989.

. Batory, D. S., et al. “GENESIS: An Extencible Database Management System.” In

Zdonik, Stanley B. and David Maier, editors, Readings in Object-Oriented Database
Systems, pages 500-518, San Mateo, CA: Morgan Kaufmann, 1990.

. Bertino, Elisa and Won Kim. “Indexing Techniques for Queries on Nested Objects,”

IEEE Transactions on Knowledge and Data Engineering, 1(2):196-214 (June 1989).

. Cardenas, Alfonso I'. and Dennis Mcleod, editors. Research Foundations in Object-

Oriented and Semantic Database Systems. Englewood Cliifs, NJ: Prentice-Hall, 1990.

. Carey, Michael J. and others. “Storage Management for Objects in EXODUS.” Com-

puter Sciences Department, University of Wisconsin, 1989.

. Carey, Michael J. and others. “Using the EXODUS Storage Manager V1.2.” Computer

Sciences Department, University of Wisconsin, 1989.

. Carey, Michael J. and others. “The EXODUS Ixtensible DBM3 Project: An

Overview.” In Zdonik, Stanley B. and David Maicr, editors, Readings in Object-
Oriented Database Systems, pages 474-499, San Mateo, CA: Morgan Kaufmann, 1990.

. Codd, E. F. “A Relational Model of Data for Large Shared Data Banks,” Communi-

cations of the ACM, 13(6):377-387 (June 1970).

. Colby, Latha S. “A Recursive Algebra and Query Optimization for Nested Relations.”

In Clifford, James, et al., editors, Proceedings of the 1989 ACM-SIGMOD Interna-
tional Conference on the Management of Data, pages 273-283, May 1989.

Dadam, P., et al. “A DBMS Prototype to Support Extended NF? Relations: An
Integrated View on Flat Tables and Hierarchies.” In Zaniolo, Carlo, editor, Proceedings
of the 1986ACM-SIGMOD International Conference on the Management of Data,
pages 356-367, May 1986.

Deshpande, Anand and Dirk Van Gucht. “An Implementation for Nested Relational
Databases.” In Bancilhon, Francois and David J. DeWitt, editors, Proceedings of the

Fourteenth International Conference on ™ .cy Large Data Bases, pages 76-87, August
1988.

Graefe, Goetz. “User Manual for the EXODUS Query Optimizer Generator.” Oregon
Graduate Center, Department of Computer Science and Engiueering, February 1989.

Graefe, Goetz and David J. DeWitt. “The EXODUS Optimizer Generator.” Com-
puter Sciences Department, University of Wisconsin, 1989.

Hanson, Eric N. “An Initizl Report on the Design of Ariél: A DBMS with an Inte-
grated Production Rule System,” SIGMOD Record, 18(3) (September 1989).

BIB-1

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Hartrum, Thomas C. “AFIT Department of Electrical and Computer Engineering
System Development Documentation Guidelines and Standards.” Draft 4, January
1989.

Heinz-Bernhard, Paul, et al. “Architecture and Implementation of the Darmstadt
Database Kernel System.” In Dayal, Umeshwar and Irv Traiger, editors, Proceedings
of the 1987TACM-SIGMOD International Conference on the Management of Dala,
pages 196-207, May 1987.

Jaeschke, Gerhard and Hans-J6rg Schek. “Remarks on the Algebra of Non First
Normal Form Relations.” In Proceedings of the ACM SIGACT-SIGMOD Symposium
on Principles of Database systems, pages 124-138, March 1982.

Korth, Henry F. and Abraham Silbershatz. Database Systems Concepts. New York:
McGraw-Hill Book Company, 1986.

Kroenke, David. Database Processing: Fundamentals, Design, Implementation.
Chicago: Science Research Associates, 1983.

Makinouchi, A. “A Consideration of Normal Form of Not-Necessarily-Normalized
Relations in the Relational Data Model,” Proc. $rd VLDB, pages 447-453 (1977).

Mankus, Capt Michael A. Design and Implementation of the Nested Rela-
tional Data Model Under the EXODUS Extensible Database System. MS thesis,
AFIT/GCS/ENG/89D-11, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, December 1989.

Materials Laboratory, Air Force Wright Aeronautical Laboratories, Air Force Systems
Command, Wright-Patterson AFB, OH 45433. Integrated Computer-Aided Manufac-
turing (ICAM) Function Modeling Manual (IDEF;), June 1981.

Morris, Capt Gerald R. A Comparison of a Relational and Nested-Relational IDEF,
Data Model. MS thesis, AFIT/GCE/ENG/89D-5, School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH, March 1990.

Richardson, Joel E. and Michael J. Carey. “Persistence in the E Language: Issues and
Implementation.” Computer Sciences Department, University of Wisconsin, 1989.

Richardson, Joel E., ot al. “The Design of the E Programming Language.” Computer
Sciences Department, University of Wisconsin, 1989.

Roth, Mark A., et al. “SQL/NF: A Query Language for ~1NF Relational Databases,”
Information Systems, 12(1):99-114 (1987).

Schek, H.-J. and Marc H. Scholl. “The Two Roles of Nested Relations in the DASDBS
Project.” In Abiteboul, S., et al., editors, Nested Relations and Complex Objects in
Databases (Lecture Notes in Computer Science 361), pages 50-68, Springer-Verlag,
1989.

Schnepf, Capt Craig W. SQL/NF Translator for the Triton Nested Relational
Database System. MS thesis, AFIT/GCE/ENG/90D-05, School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH, December 1990.

BIB-2

29.

30.

31.

32.

33.

Scholl, M., et al. “VERSO: A Database Machine Based On Nested Relations.” In
Abiteboul, S., et al., editors, Nested Relations and Complez Objects in Databases
(Lecture Notes in Computer Science $61), pages 27-49, Springer-Verlag, 1989.

Stonebraker, Michael, editor. Readings in Database Systems. San Mateo, CA: Morgan
Kaufmann, 1988.

Stroustrup, Bjarne. The C++ Programming Language. Reading, Massachusetts:
Addison-Wesley Publishing Company, 1986.

Thomas, Stan J. and Patrick C. Fischer. “Nested Relational Structures.” In Kanel-
lakis, P. C., editor, Advances in Computing Research, Volume 8: The Theory of
Databases, pages 269~-307, JAI Press, 1985.

Zdonik, Stanley B. and David Maier, editors. Readings in Object-Oriented Database
Systems. San Mateo, CA: Morgan Kaufmann, 1990.

BIB-3

REPORT DOCUMENTATION PAGE - form Approwed

OMB No. 0704-0188

Public reporing burden for this o/actwn of afGrmation s 23timated 10 1veraGe 1 ~oul Sr rasEerse, . AKLdIng the time 100 revimving instruclions, 5231 q eusting Jata sourcas,
gathenng and mathning the 2sta needed, srd LT DiRting ang raviewrq the wileckn of :nfurmation Jend comments reqarding this burden estimate or any other noect of thiy
coitection of intGrmation, Auwding suggestivns for raduarg ihes ourcen (o W nhington deadauartars rervices, Directorate tor infarmation Ozerators ard Reports, 1215 s2iferson
Davis tHighway, Suite-1204, Athrgton, VA 22202:4302,ard o tha Oltia 5t Managementaed Sudget, Piperwork Red sction Preject (0704.0188), washingtan, 0C 26503,

1. AGENCY USE ONLY (leave blank) -}-2. REPORT DATE 3. REPORT ¥¥PE AND DATES COVERED
December 1990 Mastor’s Thesis .
4, TITLE-AND SUSBTITLE) T) 5. FUNDING NUMBERS
ACCESS AND OPERATOR METHODS FOQR THE TRITON NESTED
RELATIONAL DATABASE-SYSTEM : '

6. AUTHOR(S)
Tina M. Ilarvey, Capt, USAF

A =t s s

7. PERFORMING QRGAMIZATION MAME(S) AND ADORESS(ES) R 8. PERFORMING CRGANIZATICN

. . ; e REPORT HUMBER
Air Force Institute of Technology, WPAFB OH 45433-6583 . AFIT/GCS/ENG /90D-06

_—— ”"/‘

3. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10, SPONSORING 7 MONITORING
AGESCY REPORT NUMBER

11, SUPPLETAENTARY TOTES — - = -

122, DISTRIBUTION 7 AVAILABILITY STATEMENT o 725, DISTRIBUTION CODE

Approved for public release;:distribution unlimited

13, ABSTRACT (Maximum 200words) ’ i T
——=> Unique database requirements-in the realm of non-standard applications (such-as computer-aided-design-(CAD),
computer-aided software engineering (CASE), and office.information systems.(O1S))-have driven the development
of new data models and database systems based on- these new models. In particular, the goal-of these new
database systems is to exploit:the advantages of complex-data models that aré-more efficient (in tetms-of-time
and:space) than their relational counterparts.

This research effort describes-the design and implementation of the Triton nested relational database-system,
a prototype system based on-the nested relational-data-model. Triton is intended to be used as the -backed
storage component for some non-standard application. To quickly prototypethe system, the EXODUS-extensible
database system is used in-the-development of Triton.

The research presented in-this-document focuses on Triton’s operator and access methods, and compares the
performance of the nested relational model versus the-relational model using-these methods, In-addition, the
effectiveness-of the EXODUS-extensible database toolkit is evaluated, &£—

T4, SUBJECT TERMS — — 175, NUMBER OF PAGES
data:bases, nested relational-databases, computer storage systems, database-access 125
methods, structured analysis 16. PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION]19. SECURITY CLASSIFICATION | 20. LMITATION OFABSTRACT
OF REPORT " OF THIS PAGE | or asstaact
UNCLASSIFIED ;UNCL:\SS[F[ED ~ UNCLASSIFIED - {1,

S:andard =orm 298 772y 143))
Seager geed By ANSE S 2T 4
133132

NSN 7520-01-280-5300 o

